2,320 research outputs found

    Electromagnetic emission-aware schedulers for the uplink of OFDM wireless communication systems

    Get PDF
    The popularity and convergence of wireless communications have resulted in continuous network upgrades in order to support the increasing demand for bandwidth. However, given that wireless communication systems operate on radiofrequency waves, the health effects of electromagnetic emission from these systems are increasingly becoming a concern due to the ubiquity of mobile communication devices. In order to address these concerns, we propose two schemes (offline and online) for minimizing the EM emission of users in the uplink of OFDM systems, while maintaining an acceptable quality of service. We formulate our offline EM reduction scheme as a convex optimization problem and solve it through water-filling. This is based on the assumption that the long-term channel state information of all the users is known. Given that, in practice, long-term channel state information of all the users cannot always be available, we propose our online EM emission reduction scheme, which is based on minimizing the instantaneous transmit energy per bit of each user. Simulation results show that both our proposed schemes significantly minimize the EM emission when compared to the benchmark classic greedy spectral efficiency based scheme and an energy efficiency based scheme. Furthermore, our offline scheme proves to be very robust against channel prediction errors

    A Review of MAC Scheduling Algorithms in LTE System

    Get PDF
    The recent wireless communication networks rely on the new technology named Long Term Evolution (LTE) to offer high data rate real-time (RT) traffic with better Quality of Service (QoS) for the increasing demand of customer requirement. LTE provide low latency for real-time services with high throughput, with the help of two-level packet retransmission. Hybrid Automatic Repeat Request (HARQ) retransmission at the Medium Access Control (MAC) layer of LTE networks achieves error-free data transmission. The performance of the LTE networks mainly depends on how effectively this HARQ adopted in the latest communication standard, Universal Mobile Telecommunication System (UMTS). The major challenge in LTE is to balance QoS and fairness among the users. Hence, it is very essential to design a down link scheduling scheme to get the expected service quality to the customers and to utilize the system resources efficiently. This paper provides a comprehensive literature review of LTE MAC layer and six types of QoS/Channel-aware downlink scheduling algorithms designed for this purpose. The contributions of this paper are to identify the gap of knowledge in the downlink scheduling procedure and to point out the future research direction. Based on the comparative study of algorithms taken for the review, this paper is concluded that the EXP Rule scheduler is most suited for LTE networks due to its characteristics of less Packet Loss Ratio (PLR), less Packet Delay (PD), high throughput, fairness and spectral efficiency
    • …
    corecore