1,690 research outputs found

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    Resource management in QoS-aware wireless cellular networks

    Get PDF
    2011 Summer.Includes bibliographical references.Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study two types of resource allocation problems in QoS-aware wireless cellular networks. First, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling policies under three common QoS/fairness constraints for multiuser OFDM systems--temporal fairness, utilitarian fairness, and minimum-performance guarantees. To implement these optimal policies efficiently, we provide a modified Hungarian algorithm and a simple suboptimal algorithm. We then propose a generalized opportunistic scheduling framework that incorporates multiple mixed QoS/fairness constraints, including providing both lower and upper bound constraints. Next, taking input queues and channel memory into consideration, we reformulate the transmission scheduling problem as a new class of Markov decision processes (MDPs) with fairness constraints. We investigate the throughput maximization and the delay minimization problems in this context. We study two categories of fairness constraints, namely temporal fairness and utilitarian fairness. We consider two criteria: infinite horizon expected total discounted reward and expected average reward. We derive and prove explicit dynamic programming equations for the above constrained MDPs, and characterize optimal scheduling policies based on those equations. An attractive feature of our proposed schemes is that they can easily be extended to fit different objective functions and other fairness measures. Although we only focus on uplink scheduling, the scheme is equally applicable to the downlink case. Furthermore, we develop an efficient approximation method--temporal fair rollout--to reduce the computational cost

    Optimal Fixed and Scalable Energy Management for Wireless Networks

    Get PDF
    In many devices, wireless network interfaces consume upwards of 30% of scarce portable system energy. Extending the system lifetime by minimizing communication power consumption has therefore become a priority. Conventional energy management techniques focus independently on minimizing the fixed energy consumption of the transceiver circuit or on scalable transmission control. Fixed energy consumption is reduced by maximizing the transceiver shutdown interval. In contrast, variable transmission rate, coding and power can be leveraged to minimize energy costs. These two energy management approaches present a tradeoff in minimizing the overall system energy. For example, variable energy costs are minimized by transmitting at a lower modulation rate and transmission power, but this also shortens the sleep duration thereby increasing fixed energy consumption. We present a methodology for energy-efficient resource allocation across the physical layer, communications layer and link layer. Our methodology is aimed at providing QoS for multiple users with bursty MPEG-4 video over a time-varying channel. We evaluate our scheme by exploiting control knobs of actual RF components over a modified IEEE 802.11 MAC. Our results indicate that the system lifetime is increased by a factor of 2 to 5 compared to the gains of conventional techniques

    MEERA: Cross-Layer Methodology for Energy Efficient Resource Allocation in Wireless Networks

    Get PDF
    In many portable devices, wireless network interfaces consume upwards of 30% of scarce system energy. Reducing the transceiver’s power consumption to extend the system lifetime has therefore become a design goal. Our work is targated at this goal and is based on the following two observations. First, conventional energy management approaches have focused independently on minimizing the fixed energy cost (by shutdown) and on scalable energy costs (by leveraging, for example, the modulation, code-rate and transmission power). These two energy management approaches present a tradeoff. For example, lower modulation rates and transmission power minimize the variable energy component, but this shortens the sleep duration thereby increasing fixed energy consumption. Second, in order to meet the Quality of Service (QoS) timeliness requirements for multiple users, we need to determine to what extent each system in the network may sleep and scale. Therefore, we propose a two-phase methodology that resolves the sleep-scaling tradeoff across the physical, communications and link layers at design time and schedules nodes at runtime with near optimal energy-efficient configurations in the solution space. As a result, we are able to achieve very low run-time overheads. Our methodology is applied to a case study on delivering a guaranteed QoS for multiple users with MPEG-4 video over a slow-fading channel. By exploiting runtime controllable parameters of actual RF components and a modified 802.11 Medium Access Controller, system lifetime is increased by a factor of 3-to-10 in comparison with conventional techniques

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Information Technology

    Get PDF
    The new millennium has been labeled as the century of the personal communications revolution or more specifically, the digital wireless communications revolution. The introduction of new multimedia services has created higher loads on available radio resources. These services can be presented in different levels of quality of service. Namely, the task of the radio resource manager is to provide these levels. Radio resources are scarce and need to be shared by many users. The sharing has to be carried out in an efficient way avoiding as much as possible any waste of resources. The main contribution focus of this work is on radio resource management in opportunistic systems. In opportunistic communications dynamic rate and power allocation may be performed over the dimensions of time, frequency and space in a wireless system. In this work a number of these allocation schemes are proposed. A downlink scheduler is introduced in this work that controls the activity of the users. The scheduler is a simple integral controller that controls the activity of users, increasing or decreasing it depending on the degree of proximity to a requested quality of service level. The scheduler is designed to be a best effort scheduler; that is, in the event the requested quality of service (QoS) cannot be attained, users are always guaranteed the basic QoS level provided by a proportional fair scheduler. In a proportional fair scheduler, the user with the best rate quality factor is selected. The rate quality here is the instantaneous achievable rate divided by the average throughput Uplink scheduling is more challenging than its downlink counterpart due to signalling restrictions and additional constraints on resource allocations. For instance, in long term evolution systems, single carrier FDMA is to be utilized which requires the frequency domain resource allocation to be done in such a way that a user could only be allocated subsequent bands. We suggest for the uplink a scheduler that follows a heuristic approach in its decision. The scheduler is mainly based on the gradient algorithm that maximizes the gradient of a certain utility. The utility could be a function of any QoS. In addition, an optimal uplink scheduler for the same system is presented. This optimal scheduler is valid in theory only, nevertheless, it provides a considerable benchmark for evaluation of performance for the heuristic scheduler as well as other algorithms of the same system. A study is also made for the feedback information in a multi-carrier system. In a multi-carrier system, reporting the channel state information (CSI) of every subcarrier will result in huge overhead and consequent waste in bandwidth. In this work the subcarriers are grouped into subbands which are in turn grouped into blocks and a study is made to find the minimum amount of information for the adaptive modulation and coding (AMC) of the blocks. The thesis also deals with admission control and proposes an opportunistic admission controller. The controller gradually integrates a new user requesting admission into the system. The system is probed to examine the effect of the new user on existing connections. The user is finally fully admitted if by the end of the probing, the quality of service (QoS) of existing connections did not drop below a certain threshold. It is imperative to mention that the research work of this thesis is mainly focused on non-real time applications.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Radio Resource Management for Ultra-Reliable Low-Latency Communications in 5G

    Get PDF
    corecore