532 research outputs found

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6

    Performance analysis of a new mobility/QoS-aware architecture

    Get PDF
    Ideally, the future Internet must provide acceptable Quality of Service (QoS) to mobile users that are running real-time applications and are moving across different access points at high speeds. The user mobility presents a great challenge to the network layer in order to maintain users on going connections. Currently, the Internet protocol that manages the user mobility at the network level is the Mobile Internet Protocol (MIP). This protocol, when a mobile user changes its point of attachment, maintains the same IP address for mobile node, so that user mobility became invisible to the application level and thus avoiding a connection interruption. Although, MIP standard allows the user mobility while maintaining an uninterrupted connection to an application, it does not have any concerns with the QoS support provided to applications with more strict performance requirements such as real-time applications. This paper addresses the issue of mobility and QoS management principles as well as the mobility and QoS management integration in the sense of build a QoS-aware architecture for mobile Internet. After covering the mobility and QoS management principles and integration, this paper also proposes a new QoS-aware architecture for mobile Internet. This new architecture takes into account the specific characteristics of mobile networks in order to design an integrated Mobility/QoS-aware management architecture suitable for real-time applications requirements. The simulation results indicate that the suggested architecture is able to provide acceptable QoS levels to real-time applications that are running in mobiles devices.(undefined

    A QoS-enable solution for mobile environments

    Get PDF
    This paper addresses the problem of designing a suitable Quality of Service (QoS) solution for mobile environments. The proposed solution deploys a dynamic QoS provisioning scheme able to deal with service protection during node mobility within a local domain, presenting extensions to deal with global mobility. The dynamic QoS provisioning encompasses a QoS architecture that uses explicit and implicit setup mechanisms to request resources from the network for the purpose of supporting control plane functions and optimizing resource allocation. Abstract--- For efficient resource allocation, the resource and mobility management schemes have been coupled resulting in a QoS/Mobility aware network architecture able to react proactively to mobility events. Both management schemes have been optimized to work together, in order to support seamless handovers for mobile users running real-time applications. Abstract--- The analysis of performance improvement and the model parametrization of the proposed solution have been evaluated using simulation. Simulation results show that the solution avoids network congestion and also the starvation of less priority DiffServ classes. Moreover, the results also show that bandwidth utilization for priority classes is levered and that the QoS offered to Mobile Node's (MN's) applications, within each DiffServ class, is maintained in spite of MN mobility. Abstract--- The proposed model is simple, easy to implement and takes into account the mobile Internet requirements. Simulation results show that this new methodology is effective and able to provide QoS services adapted to application requests

    Towards effective dynamic resource allocation for enterprise applications

    Get PDF
    The growing use of online services requires substantial supporting infrastructure. The efficient deployment of applications relies on the cost effectiveness of commercial hosting providers who deliver an agreed quality of service as governed by a service level agreement for a fee. The priorities of the commercial hosting provider are to maximise revenue, by delivering agreed service levels, and minimise costs, through high resource utilisation. In order to deliver high service levels and resource utilisation, it may be necessary to reorganise resources during periods of high demand. This reorganisation process may be manual or alternatively controlled by an autonomous process governed by a dynamic resource allocation algorithm. Dynamic resource allocation has been shown to improve service levels and utilisation and hence, profitability. In this thesis several facets of dynamic resource allocation are examined to asses its suitability for the modern data centre. Firstly, three theoretically derived policies are implemented as a middleware for a modern multi-tier Web application and their performance is examined under a range of workloads in a real world test bed. The scalability of state-of-the art resource allocation policies are explored in two dimensions, namely the number of applications and the quantity of servers under control of the resources allocation policy. The results demonstrate that current policies presented in the literature demonstrate poor scalability in one or both of these dimensions. A new policy is proposed which has significantly improved scalability characteristics and the new policy is demonstrated at scale through simulation. The placement of applications in across a datacenter makes them susceptible to failures in shared infrastructure. To address this issue an application placement mechanism is developed to augment any dynamic resource allocation policy. The results of this placement mechanism demonstrate a significant improvement in the worst case when compared to a random allocation mechanism. A model for the reallocation of resources in a dynamic resource allocation system is also devised. The model demonstrates that the assumption of a constant resource reallocation cost is invalid under both physical reallocation and migration of virtualised resources

    Industrial Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs

    QoS-aware Radio Resource Management for Spectrum Sharing Radio Networks

    Get PDF

    Formulation, implementation considerations, and first performance evaluation of algorithmic solutions - D4.1

    Get PDF
    Deliverable D4.1 del projecte Europeu OneFIT (ICT-2009-257385)This deliverable contains a first version of the algorithmic solutions for enabling opportunistic networks. The presented algorithms cover the full range of identified management tasks: suitability, creation, QoS control, reconfiguration and forced terminations. Preliminary evaluations complement the proposed algorithms. Implementation considerations towards the practicality of the considered algorithms are also included.Preprin

    A conceptual architecture for adaptation in remote desktop systems driven by the user perception of multimedia

    Full text link
    Current thin-client remote desktop systems were designed for data-oriented applications over low-quality LAN links and they do not provide satisfactory end-user performance in enterprise environment for more and more popular graphical and multimedia applications. To improve perception of those applications in thin-client environment we propose architecture of a server-side Quality of Service (QoS) management component responsible for mapping application QoS requirements into network QoS. We analyze how service differentiation and traffic management techniques combined with user perception monitoring can be used in order to adjust network level resource allocation when performance of multimedia applications in remote desktop environment is not meeting user requirements. Our objective is to provide QoS-aware remote desktop systems which will be able to manage available resources in intelligent manner and meet end-user performance expectations. © 2005 IEEE
    corecore