3,632 research outputs found

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    A Mobile Geo-Communication Dataset for Physiology-Aware DASH in Rural Ambulance Transport

    Full text link
    Use of telecommunication technologies for remote, continuous monitoring of patients can enhance effectiveness of emergency ambulance care during transport from rural areas to a regional center hospital. However, the communication along the various routes in rural areas may have wide bandwidth ranges from 2G to 4G; some regions may have only lower satellite bandwidth available. Bandwidth fluctuation together with real-time communication of various clinical multimedia pose a major challenge during rural patient ambulance transport.; AB@The availability of a pre-transport route-dependent communication bandwidth database is an important resource in remote monitoring and clinical multimedia transmission in rural ambulance transport. Here, we present a geo-communication dataset from extensive profiling of 4 major US mobile carriers in Illinois, from the rural location of Hoopeston to the central referral hospital center at Urbana. In collaboration with Carle Foundation Hospital, we developed a profiler, and collected various geographical and communication traces for realistic emergency rural ambulance transport scenarios. Our dataset is to support our ongoing work of proposing "physiology-aware DASH", which is particularly useful for adaptive remote monitoring of critically ill patients in emergency rural ambulance transport. It provides insights on ensuring higher Quality of Service (QoS) for most critical clinical multimedia in response to changes in patients' physiological states and bandwidth conditions. Our dataset is available online for research community.Comment: Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys'17), Pages 158-163, Taipei, Taiwan, June 20 - 23, 201

    Solutions for IPv6-based mobility in the EU project MobyDick

    Get PDF
    Proceedings of the WTC 2002, 18th World Telecommunications Congress, Paris, France, 22 -27 September, 2002.Mobile Internet technology is moving towards a packet-based or, more precisely, IPv6-based network. Current solutions on Mobile IPv6 and other related QoS and AAA matters do not offer the security and quality users have come to take for granted. The EU IST project Moby Dick has taken on the challenge of providing a solution that integrates QoS, mobility and AAA in a heterogeneous access environment. This paper focuses on the mobility part of the project, describes and justifies the handover approach taken, shows how QoS-aware and secure handover is achieved, and introduces the project's paging concept. It shows that a transition to a fully integrated IP-RAN and IP-Backbone has become a distinct option for the future.Publicad

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends
    • …
    corecore