632 research outputs found

    3D Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy-Efficient Maximal Coverage

    Full text link
    Unmanned Aerial Vehicle mounted base stations (UAV-BSs) can provide wireless services in a variety of scenarios. In this letter, we propose an optimal placement algorithm for UAV-BSs that maximizes the number of covered users using the minimum transmit power. We decouple the UAV-BS deployment problem in the vertical and horizontal dimensions without any loss of optimality. Furthermore, we model the UAV-BS deployment in the horizontal dimension as a circle placement problem and a smallest enclosing circle problem. Simulations are conducted to evaluate the performance of the proposed method for different spatial distributions of the users

    Coverage and Rate Analysis for Unmanned Aerial Vehicle Base Stations with LoS/NLoS Propagation

    Full text link
    The use of unmanned aerial vehicle base stations (UAV-BSs) as airborne base stations has recently gained great attention. In this paper, we model a network of UAV-BSs as a Poisson point process (PPP) operating at a certain altitude above the ground users. We adopt an air-to-ground (A2G) channel model that incorporates line-of-sight (LoS) and non-line-of-sight (NLoS) propagation. Thus, UAV-BSs can be decomposed into two independent inhomogeneous PPPs. Under the assumption that NLoS and LoS channels experience Rayleigh and Nakagami-m fading, respectively, we derive approximations for the coverage probability and average achievable rate, and show that these approximations match the simulations with negligible errors. Numerical simulations have shown that the coverage probability and average achievable rate decrease as the height of the UAV-BSs increases

    Minimum Cost Design of Cellular Networks in Rural Areas with UAVs, Optical Rings, Solar Panels and Batteries

    Get PDF
    Bringing the cellular connectivity in rural zones is a big challenge, due to the large installation costs that are incurred when a legacy cellular network based on fixed Base Stations (BSs) is deployed. To tackle this aspect, we consider an alternative architecture composed of UAV-based BSs to provide cellular coverage, ground sites to connect the UAVs with the rest of the network, Solar Panels (SPs) and batteries to recharge the UAVs and to power the ground sites, and a ring of optical fiber links to connect the installed sites. We then target the minimization of the installation costs for the considered UAV-based cellular architecture, by taking into account the constraints of UAVs coverage, SPs energy consumption, levels of the batteries and the deployment of the optical ring. After providing the problem formulation, we derive an innovative methodology to ensure that a single ring of installed optical fibers is deployed. Moreover, we propose a new algorithm, called DIARIZE, to practically tackle the problem. Our results, obtained over a set of representative rural scenarios, show that DIARIZE performs very close to the optimal solution, and in general outperforms a reference design based on fixed BSs

    Energy-Efficient UAVs Deployment for QoS-Guaranteed VoWiFi Service

    Get PDF
    This paper formulates a new problem for the optimal placement of Unmanned Aerial Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to a set of ground users confined in an open area. Our objective function is constrained by coverage and by VoIP speech quality and minimizes the ratio between the number of UAVs deployed and energy efficiency in UAVs, hence providing the layout that requires fewer UAVs per hour of service. Solutions provide the number and position of UAVs to be deployed, and are found using well-known heuristic search methods such as genetic algorithms (used for the initial deployment of UAVs), or particle swarm optimization (used for the periodical update of the positions). We examine two communication services: (a) one bidirectional VoWiFi channel per user; (b) single broadcast VoWiFi channel for announcements. For these services, we study the results obtained for an increasing number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. Results show that the drone turnover rate is related to both users’ sparsity and the number of users served by each UAV. For the unicast service, the ratio of UAVs per hour of service tends to increase with user sparsity and the power of radio communication represents 14–16% of the total UAV energy consumption depending on ground user density. In large areas, solutions tend to locate UAVs at higher altitudes seeking increased coverage, which increases energy consumption due to hovering. However, in the VoWiFi broadcast communication service, the traffic is scarce, and solutions are mostly constrained only by coverage. This results in fewer UAVs deployed, less total power consumption (between 20% and 75%), and less sensitivity to the number of served users.Junta de Andalucía Beca 2020/00000172Unión Europea FEDER 2014-202
    • …
    corecore