2,161 research outputs found

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    IoT@run-time: a model-based approach to support deployment and self-adaptations in IoT systems

    Get PDF
    Today, most Internet of Things (IoT) systems leverage edge and fog computing to meet increasingly restrictive requirements and improve quality of service (QoS). Although these multi-layer architectures can improve system performance, their design is challenging because the dynamic and changing IoT environment can impact the QoS and system operation. In this thesis, we propose a modeling-based approach that addresses the limitations of existing studies to support the design, deployment, and management of self-adaptive IoT systems. We have designed a domain specific language (DSL) to specify the self-adaptive IoT system, a code generator that generates YAML manifests for the deployment of the IoT system, and a framework based on the MAPE-K loop to monitor and adapt the IoT system at runtime. Finally, we have conducted several experimental studies to validate the expressiveness and usability of the DSL and to evaluate the ability and performance of our framework to address the growth of concurrent adaptations on an IoT system.Hoy en día, la mayoría de los sistemas de internet de las cosas (IoT, por su sigla en inglés) aprovechan la computación en el borde (edge computing) y la computación en la niebla (fog computing) para cumplir requisitos cada vez más restrictivos y mejorar la calidad del servicio. Aunque estas arquitecturas multicapa pueden mejorar el rendimiento del sistema, diseñarlas supone un reto debido a que el entorno de IoT dinámico y cambiante puede afectar a la calidad del servicio y al funcionamiento del sistema. En esta tesis proponemos un enfoque basado en el modelado que aborda las limitaciones de los estudios existentes para dar soporte en el diseño, el despliegue y la gestión de sistemas de IoT autoadaptables. Hemos diseñado un lenguaje de dominio específico (DSL) para modelar el sistema de IoT autoadaptable, un generador de código que produce manifiestos YAML para el despliegue del sistema de IoT y un marco basado en el bucle MAPE-K para monitorizar y adaptar el sistema de IoT en tiempo de ejecución. Por último, hemos llevado a cabo varios estudios experimentales para validar la expresividad y usabilidad del DSL y evaluar la capacidad y el rendimiento de nuestro marco para abordar el crecimiento de las adaptaciones concurrentes en un sistema de IoT.Avui dia, la majoria dels sistemes d'internet de les coses (IoT, per la sigla en anglès) aprofiten la informàtica a la perifèria (edge computing) i la informàtica a la boira (fog computing) per complir requisits cada cop més restrictius i millorar la qualitat del servei. Tot i que aquestes arquitectures multicapa poden millorar el rendiment del sistema, dissenyar-les suposa un repte perquè l'entorn d'IoT dinàmic i canviant pot afectar la qualitat del servei i el funcionament del sistema. En aquesta tesi proposem un enfocament basat en el modelatge que aborda les limitacions dels estudis existents per donar suport al disseny, el desplegament i la gestió de sistemes d'IoT autoadaptatius. Hem dissenyat un llenguatge de domini específic (DSL) per modelar el sistema d'IoT autoadaptatiu, un generador de codi que produeix manifestos YAML per al desplegament del sistema d'IoT i un marc basat en el bucle MAPE-K per monitorar i adaptar el sistema d'IoT en temps d'execució. Finalment, hem dut a terme diversos estudis experimentals per validar l'expressivitat i la usabilitat del DSL i avaluar la capacitat i el rendiment del nostre marc per abordar el creixement de les adaptacions concurrents en un sistema d'IoT.Tecnologies de la informació i de xarxe

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure
    corecore