1,276 research outputs found

    Effective Capacity in Cognitive Radio Broadcast Channels

    Full text link
    In this paper, we investigate effective capacity by modeling a cognitive radio broadcast channel with one secondary transmitter (ST) and two secondary receivers (SRs) under quality-of-service constraints and interference power limitations. We initially describe three different cooperative channel sensing strategies with different hard-decision combining algorithms at the ST, namely OR, Majority, and AND rules. Since the channel sensing occurs with possible errors, we consider a combined interference power constraint by which the transmission power of the secondary users (SUs) is bounded when the channel is sensed as both busy and idle. Furthermore, regarding the channel sensing decision and its correctness, there exist possibly four different transmission scenarios. We provide the instantaneous ergodic capacities of the channel between the ST and each SR in all of these scenarios. Granting that transmission outage arises when the instantaneous transmission rate is greater than the instantaneous ergodic capacity, we establish two different transmission rate policies for the SUs when the channel is sensed as idle. One of these policies features a greedy approach disregarding a possible transmission outage, and the other favors a precautious manner to prevent this outage. Subsequently, we determine the effective capacity region of this channel model, and we attain the power allocation policies that maximize this region. Finally, we present the numerical results. We first show the superiority of Majority rule when the channel sensing results are good. Then, we illustrate that a greedy transmission rate approach is more beneficial for the SUs under strict interference power constraints, whereas sending with lower rates will be more advantageous under loose interference constraints.Comment: Submitted and Accepted to IEEE Globecom 201

    Cognitive Radio Systems: Performance Analysis and Optimal Resource Allocation

    Get PDF
    Rapid growth in the use of wireless services coupled with inefficient utilization of scarce spectrum resources has led to the analysis and development of cognitive radio systems. Cognitive radio systems provide dynamic and more efficient utilization of the available spectrum by allowing unlicensed users (i.e., cognitive or secondary users) to access the frequency bands allocated to the licensed users (i.e., primary users) without causing harmful interference to the primary user transmissions. The central goal of this thesis is to conduct a performance analysis and obtain throughput- and energy-efficient optimal resource allocation strategies for cognitive radio systems. Cognitive radio systems, which employ spectrum sensing mechanisms to learn the channel occupancy by primary users, generally operate under sensing uncertainty arising due to false alarms and miss-detections. This thesis analyzes the performance of cognitive radio systems in a practical setting with imperfect spectrum sensing. In the first part of the thesis, optimal power adaptation schemes that maximize the achievable rates of cognitive users with arbitrary input distributions in underlay cognitive radio systems subject to transmit and interference power constraints are studied. Simpler approximations of optimal power control policies in the low-power regime are determined. Low-complexity optimal power control algorithms are proposed. Next, energy efficiency is considered as the performance metric and power allocation strategies that maximize the energy efficiency of cognitive users in the presence of time-slotted primary users are identified. The impact of different levels of channel knowledge regarding the transmission link between the secondary transmitter and secondary receiver, and the interference link between the secondary transmitter and primary receiver on the optimal power allocation is addressed. In practice, the primary user may change its status during the transmission phase of the secondary users. In such cases, the assumption of time-slotted primary user transmission no longer holds. With this motivation, the spectral and energy efficiency in cognitive radio systems with unslotted primary users are analyzed and the optimal frame duration and energy-efficient optimal power control schemes subject to a collision constraint are jointly determined. The second line of research in this thesis focuses on symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. General formulations for the optimal decision rule and error probabilities for arbitrary modulation schemes are provided. The optimal decision rule for rectangular quadrature amplitude modulation (QAM) is characterized, and closed-form expressions for the average symbol error probability attained with the optimal detector under both transmit power and interference constraints are derived. Furthermore, throughput of cognitive radio systems for both fixed-rate and variable-rate transmissions in the finite-blocklength regime is studied. The maximum constant arrival rates that the cognitive radio channel can support with finite blocklength codes while satisfying statistical quality of service (QoS) constraints imposed as limitations on the buffer violation probability are characterized. In the final part of the thesis, performance analysis in the presence of QoS requirements is extended to general wireless systems, and energy efficiency and throughput optimization with arbitrary input signaling are studied when statistical QoS constraints are imposed as limitations on the buffer violation probability. Effective capacity is chosen as the performance metric to characterize the maximum throughput subject to such buffer constraints by capturing the asymptotic decay-rate of buffer occupancy. Initially, constant-rate source is considered and subsequently random arrivals are taken into account

    multimedia transmission over wireless networks: performance analysis and optimal resource allocation

    Get PDF
    In recent years, multimedia applications such as video telephony, teleconferencing, and video streaming, which are delay sensitive and bandwidth intensive, have started to account for a significant portion of the data traffic in wireless networks. Such multimedia applications require certain quality of service (QoS) guarantees in terms of delay, packet loss, buffer underflows and overflows, and received multimedia quality. It is also important to note that such requirements need to be satisfied in the presence of limited wireless resources, such as power and bandwidth. Therefore, it is critical to conduct a rigorous performance analysis of multimedia transmissions over wireless networks and identify efficient resource allocation strategies. Motivated by these considerations, in the first part of the thesis, performance of hierarchical modulation-based multimedia transmissions is analyzed. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, two different types of wireless networks are considered. Specifically, multimedia transmission over cognitive radio networks and device-to-device (D2D) cellular wireless networks is addressed. Closed-form bit error rate (BER) expressions are derived and optimal power control strategies are determined. Next, throughput and optimal resource allocation strategies are studied for multimedia transmission under delay QoS and energy efficiency (EE) constraints. A Quality-Rate (QR) distortion model is employed to measure the quality of received video in terms of peak signal-to-noise ratio (PSNR) as a function of video source rate. Effective capacity (EC) is used as the throughput metric under delay QoS constraints. In this analysis, four different wireless networks are taken into consideration: First, D2D underlaid wireless networks are addressed. Efficient transmission mode selection and resource allocation strategies are analyzed with the goal of maximizing the quality of the received video at the receiver in a frequency-division duplexed (FDD) cellular network with a pair of cellular users, one base station and a pair of D2D users under delay QoS and EE constraints. A full-duplex communication scenario with a pair of users and multiple subchannels in which users can have different delay requirements is addressed. Since the optimization problem is not concave or convex due to the presence of interference, optimal power allocation policies that maximize the weighted sum video quality subject to total transmission power level constraint are derived by using monotonic optimization theory. The optimal scheme is compared with two suboptimal strategies. A full-duplex communication scenario with multiple pairs of users in which different users have different delay requirements is addressed. EC is used as the throughput metric in the presence of statistical delay constraints since deterministic delay bounds are difficult to guarantee due to the time-varying nature of wireless fading channels. Optimal resource allocation strategies are determined under bandwidth, power and minimum video quality constraints again using the monotonic optimization framework. A broadcast scenario in which a single transmitter sends multimedia data to multiple receivers is considered. The optimal bandwidth allocation and the optimal power allocation/power control policies that maximize the sum video quality subject to total bandwidth and minimum EE constraints are derived. Five different resource allocation strategies are investigated, and the joint optimization of the bandwidth allocation and power control is shown to provide the best performance. Tradeoff between EE and video quality is also demonstrated. In the final part of the thesis, power control policies are investigated for streaming variable bit rate (VBR) video over wireless links. A deterministic traffic model for stored VBR video, taking into account the frame size, frame rate, and playout buffers is considered. Power control and the transmission mode selection with the goal of maximizing the sum transmission rate while avoiding buffer underflows and overflows under transmit power constraints is exploited in a D2D wireless network. Another system model involving a transmitter (e.g., a base station (BS)) that sends VBR video data to a mobile user equipped with a playout buffer is also adopted. In this setting, both offline and online power control policies are considered in order to minimize the transmission power without playout buffer underflows and overflows. Both dynamic programming and reinforcement learning based algorithms are developed
    corecore