41 research outputs found

    Design and Analysis of FD MIMO Cellular System in coexistence with MIMO Radar

    Get PDF

    Coexistence of MIMO Radar and FD MIMO Cellular Systems with QoS Considerations

    Get PDF
    In this work, the feasibility of spectrum sharing between a multiple-input multiple-output (MIMO) radar system (RS) and a MIMO cellular system (CS), comprising of a full duplex (FD) base station (BS) serving multiple downlink and uplink users at the same time and frequency is investigated. While a joint transceiver design technique at the CS's BS and users is proposed to maximise the probability of detection (PoD) of the MIMO RS, subject to constraints of quality of service (QoS) of users and transmit power at the CS, null-space based waveform projection is used to mitigate the interference from RS towards CS. In particular, the proposed technique optimises the performance of PoD of RS by maximising its lower bound, which is obtained by exploiting the monotonically increasing relationship of PoD and its non-centrality parameter. Numerical results show the utility of the proposed spectrum sharing framework, but with certain trade-offs in performance corresponding to RS's transmit power, RS's PoD, CS's residual self interference power at the FD BS and QoS of users

    Joint Transceiver Design for Dual-Functional Full-Duplex Relay Aided Radar-Communication Systems

    Get PDF
    Driven by the demand for massive and accurate sensing data to achieve wireless network intelligence under a limited available spectrum, the coexistence between radar and communication systems has attracted public attention. In this paper, we investigate a novel dual-functional full-duplex relay aided radar-communication system where the phased-array radar is employed at the amplify-and-forward (AF) relay. A joint transceiver design is proposed to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all detection directions at the radar receiver under communication quality-of-service and total energy constraints. The formulated optimization problem is particularly challenging due to the highly nonconvex objective function and constraints. Based on the problem structure, we equivalently decompose it into the radar-energy and relay-energy minimization problems under SINR requirements. To solve the radar-energy minimization problem, we propose a low-complexity algorithm based on the alternating direction method of multipliers to optimize the radar transmit power and receiver. The relay-energy minimization problem can be simplified into an equivalent quadratic programming problem by introducing an insightful unitary matrix. Then, the closed-form expression for the AF relay beamforming matrix can be derived, which is jointly determined by the channel condition of relay communication and the detection direction of the radar. After that, we introduce the overall transceiver design algorithm to the original problem and discuss its optimality and computational complexity. Simulation results verify that the proposed algorithm significantly outperforms other benchmark algorithms

    Co-Designing Statistical MIMO Radar and In-band Full-Duplex Multi-User MIMO Communications

    Full text link
    We consider a spectral sharing problem in which a statistical (or widely distributed) multiple-input-multiple-output (MIMO) radar and an in-band full-duplex (IBFD) multi-user MIMO (MU-MIMO) communications system concurrently operate within the same frequency band. Prior works on joint MIMO-radar-MIMO-communications (MRMC) systems largely focus on either colocated MIMO radars, half-duplex MIMO communications, single-user scenarios, omit practical constraints, or MRMC co-existence that employs separate transmit/receive units. In this paper, we present a co-design framework that addresses all of these issues. In particular, we jointly design the statistical MIMO radar codes, uplink (UL)/downlink (DL) precoders of in-band full-duplex multi-user MIMO communications, and corresponding receive filters using our proposed metric of compounded-and-weighted sum mutual information. This formulation includes practical constraints of UL/DL transmit powers, UL/DL quality-of-service, and peak-to-average-power ratio. We solve the resulting highly non-convex problem through a combination of block coordinate descent and alternating projection methods. Extensive numerical experiments show that our methods achieve monotonic convergence in a few iterations, improve radar target detection over conventional codes, and yield a higher achievable data rate than standard precoders.Comment: 20 pages, 8 figures, 1 tabl

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Information Theoretic Approach for Waveform Design in Coexisting MIMO Radar and MIMO Communications

    Get PDF
    We investigate waveform design for coexistence between a multipleinput multiple-output (MIMO) radar and MIMO communications (MRMC), with a radar-centric criterion that leads to a minimal interference in the communications system. The communications use the traditional mode of operation in Long Term Evolution (LTE)/Advanced (FDD), where we formulate the design problem based on information-theoretic criterion with the discrete phase constraint at the design stage. The optimization problem, is nonconvex, multi-objective and multi-variable, where we propose an efficient algorithm based on the coordinate descent (CD) framework to simultaneously improve radar target detection performance and the communications rate. The numerical results indicate the effectiveness of the proposed algorithm in designing discrete phase set of sequences, potentially binary

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area
    corecore