356 research outputs found

    Outlier-Resilient Web Service QoS Prediction

    Get PDF
    The proliferation of Web services makes it difficult for users to select the most appropriate one among numerous functionally identical or similar service candidates. Quality-of-Service (QoS) describes the non-functional characteristics of Web services, and it has become the key differentiator for service selection. However, users cannot invoke all Web services to obtain the corresponding QoS values due to high time cost and huge resource overhead. Thus, it is essential to predict unknown QoS values. Although various QoS prediction methods have been proposed, few of them have taken outliers into consideration, which may dramatically degrade the prediction performance. To overcome this limitation, we propose an outlier-resilient QoS prediction method in this paper. Our method utilizes Cauchy loss to measure the discrepancy between the observed QoS values and the predicted ones. Owing to the robustness of Cauchy loss, our method is resilient to outliers. We further extend our method to provide time-aware QoS prediction results by taking the temporal information into consideration. Finally, we conduct extensive experiments on both static and dynamic datasets. The results demonstrate that our method is able to achieve better performance than state-of-the-art baseline methods.Comment: 12 pages, to appear at the Web Conference (WWW) 202

    Deep Learning Framework for Online Interactive Service Recommendation in Iterative Mashup Development

    Full text link
    Recent years have witnessed the rapid development of service-oriented computing technologies. The boom of Web services increases the selection burden of software developers in developing service-based systems (such as mashups). How to recommend suitable follow-up component services to develop new mashups has become a fundamental problem in service-oriented software engineering. Most of the existing service recommendation approaches are designed for mashup development in the single-round recommendation scenario. It is hard for them to update recommendation results in time according to developers' requirements and behaviors (e.g., instant service selection). To address this issue, we propose a deep-learning-based interactive service recommendation framework named DLISR, which aims to capture the interactions among the target mashup, selected services, and the next service to recommend. Moreover, an attention mechanism is employed in DLISR to weigh selected services when recommending the next service. We also design two separate models for learning interactions from the perspectives of content information and historical invocation information, respectively, as well as a hybrid model called HISR. Experiments on a real-world dataset indicate that HISR outperforms several state-of-the-art service recommendation methods in the online interactive scenario for developing new mashups iteratively.Comment: 15 pages, 6 figures, and 3 table

    Recommendation and weaving of reusable mashup model patterns for assisted development

    Get PDF
    With this article, we give an answer to one of the open problems of mashup development that users may face when operating a model-driven mashup tool, namely the lack of modeling expertise. Although commonly considered simple applications, mashups can also be complex software artifacts depending on the number and types of Web resources (the components) they integrate. Mashup tools have undoubtedly simplified mashup development, yet the problem is still generally nontrivial and requires intimate knowledge of the components provided by the mashup tool, its underlying mashup paradigm, and of how to apply such to the integration of the components. This knowledge is generally neither intuitive nor standardized across different mashup tools and the consequent lack of modeling expertise affects both skilled programmers and end-user programmers alike. In this article, we show how to effectively assist the users of mashup tools with contextual, interactive recommendations of composition knowledge in the form of reusable mashup model patterns. We design and study three different recommendation algorithms and describe a pattern weaving approach for the one-click reuse of composition knowledge. We report on the implementation of three pattern recommender plugins for different mashup tools and demonstrate via user studies that recommending and weaving contextual mashup model patterns significantly reduces development times in all three cases

    Self-adaptive mobile web service discovery framework for dynamic mobile environment

    Get PDF
    The advancement in mobile technologies has undoubtedly turned mobile web service (MWS) into a significant computing resource in a dynamic mobile environment (DME). The discovery is one of the critical stages in the MWS life cycle to identify the most relevant MWS for a particular task as per the request's context needs. While the traditional service discovery frameworks that assume the world is static with predetermined context are constrained in DME, the adaptive solutions show potential. Unfortunately, the effectiveness of these frameworks is plagued by three problems. Firstly, the coarse-grained MWS categorization approach that fails to deal with the proliferation of functionally similar MWS. Secondly, context models constricted by insufficient expressiveness and inadequate extensibility confound the difficulty in describing the DME, MWS, and the user’s MWS needs. Thirdly, matchmaking requires manual adjustment and disregard context information that triggers self-adaptation, leading to the ineffective and inaccurate discovery of relevant MWS. Therefore, to address these challenges, a self-adaptive MWS discovery framework for DME comprises an enhanced MWS categorization approach, an extensible meta-context ontology model, and a self-adaptive MWS matchmaker is proposed. In this research, the MWS categorization is achieved by extracting the goals and tags from the functional description of MWS and then subsuming k-means in the modified negative selection algorithm (M-NSA) to create categories that contain similar MWS. The designing of meta-context ontology is conducted using the lightweight unified process for ontology building (UPON-Lite) in collaboration with the feature-oriented domain analysis (FODA). The self-adaptive MWS matchmaking is achieved by enabling the self-adaptive matchmaker to learn MWS relevance using a Modified-Negative Selection Algorithm (M-NSA) and retrieve the most relevant MWS based on the current context of the discovery. The MWS categorization approach was evaluated, and its impact on the effectiveness of the framework is assessed. The meta-context ontology was evaluated using case studies, and its impact on the service relevance learning was assessed. The proposed framework was evaluated using a case study and the ProgrammableWeb dataset. It exhibits significant improvements in terms of binary relevance, graded relevance, and statistical significance, with the highest average precision value of 0.9167. This study demonstrates that the proposed framework is accurate and effective for service-based application designers and other MWS clients

    INQUIRIES IN INTELLIGENT INFORMATION SYSTEMS: NEW TRAJECTORIES AND PARADIGMS

    Get PDF
    Rapid Digital transformation drives organizations to continually revitalize their business models so organizations can excel in such aggressive global competition. Intelligent Information Systems (IIS) have enabled organizations to achieve many strategic and market leverages. Despite the increasing intelligence competencies offered by IIS, they are still limited in many cognitive functions. Elevating the cognitive competencies offered by IIS would impact the organizational strategic positions. With the advent of Deep Learning (DL), IoT, and Edge Computing, IISs has witnessed a leap in their intelligence competencies. DL has been applied to many business areas and many industries such as real estate and manufacturing. Moreover, despite the complexity of DL models, many research dedicated efforts to apply DL to limited computational devices, such as IoTs. Applying deep learning for IoTs will turn everyday devices into intelligent interactive assistants. IISs suffer from many challenges that affect their service quality, process quality, and information quality. These challenges affected, in turn, user acceptance in terms of satisfaction, use, and trust. Moreover, Information Systems (IS) has conducted very little research on IIS development and the foreseeable contribution for the new paradigms to address IIS challenges. Therefore, this research aims to investigate how the employment of new AI paradigms would enhance the overall quality and consequently user acceptance of IIS. This research employs different AI paradigms to develop two different IIS. The first system uses deep learning, edge computing, and IoT to develop scene-aware ridesharing mentoring. The first developed system enhances the efficiency, privacy, and responsiveness of current ridesharing monitoring solutions. The second system aims to enhance the real estate searching process by formulating the search problem as a Multi-criteria decision. The system also allows users to filter properties based on their degree of damage, where a deep learning network allocates damages in 12 each real estate image. The system enhances real-estate website service quality by enhancing flexibility, relevancy, and efficiency. The research contributes to the Information Systems research by developing two Design Science artifacts. Both artifacts are adding to the IS knowledge base in terms of integrating different components, measurements, and techniques coherently and logically to effectively address important issues in IIS. The research also adds to the IS environment by addressing important business requirements that current methodologies and paradigms are not fulfilled. The research also highlights that most IIS overlook important design guidelines due to the lack of relevant evaluation metrics for different business problems
    corecore