68 research outputs found

    MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions

    Get PDF
    Cloud computing is continuously growing as a business model for hosting information and communication technology applications. However, many concerns arise regarding the quality of service (QoS) offered by the cloud. One major challenge is the high availability (HA) of cloud-based applications. The key to achieving availability requirements is to develop an approach that is immune to cloud failures while minimizing the service level agreement (SLA) violations. To this end, this thesis addresses the HA of cloud-based applications from different perspectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to manage the deployments of carrier-grade cloud applications while maximizing their HA and satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed to capture the stochastic characteristics of cloud services and quantify the expected availability offered by an application deployment. The SPN model is then associated with an extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e. green and cost concerns) with HA objectives. The proposed HA-aware solutions are extended to include a live virtual machine migration model that provides a trade-off between the migration time and the downtime while maintaining HA objective. Furthermore, the thesis proposes a generic input template for cloud simulators, GITS, to facilitate the creation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simulator with failure injection, computational paths, repair, failover, load balancing, and other availability-based modules

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services

    Carbon-profit-aware job scheduling and load balancing in geographically distributed cloud for HPC and web applications

    Get PDF
    This thesis introduces two carbon-profit-aware control mechanisms that can be used to improve performance of job scheduling and load balancing in an interconnected system of geographically distributed data centers for HPC and web applications. These control mechanisms consist of three primary components that perform: 1) measurement and modeling, 2) job planning, and 3) plan execution. The measurement and modeling component provide information on energy consumption and carbon footprint as well as utilization, weather, and pricing information. The job planning component uses this information to suggest the best arrangement of applications as a possible configuration to the plan execution component to perform it on the system. For reporting and decision making purposes, some metrics need to be modeled based on directly measured inputs. There are two challenges in accurately modeling of these necessary metrics: 1) feature selection and 2) curve fitting (regression). First, to improve the accuracy of power consumption models of the underutilized servers, advanced fitting methodologies were used on the selected server features. The resulting model is then evaluated on real servers and is used as part of load balancing mechanism for web applications. We also provide an inclusive model for cooling system in data centers to optimize the power consumption of cooling system, which in turn is used by the planning component. Furthermore, we introduce another model to calculate the profit of the system based on the price of electricity, carbon tax, operational costs, sales tax, and corporation taxes. This model is used for optimized scheduling of HPC jobs. For position allocation of web applications, a new heuristic algorithm is introduced for load balancing of virtual machines in a geographically distributed system in order to improve its carbon awareness. This new heuristic algorithm is based on genetic algorithm and is specifically tailored for optimization problems of interconnected system of distributed data centers. A simple version of this heuristic algorithm has been implemented in the GSN project, as a carbon-aware controller. Similarly, for scheduling of HPC jobs on servers, two new metrics are introduced: 1) profitper-core-hour-GHz and 2) virtual carbon tax. In the HPC job scheduler, these new metrics are used to maximize profit and minimize the carbon footprint of the system, respectively. Once the application execution plan is determined, plan execution component will attempt to implement it on the system. Plan execution component immediately uses the hypervisors on physical servers to create, remove, and migrate virtual machines. It also executes and controls the HPC jobs or web applications on the virtual machines. For validating systems designed using the proposed modeling and planning components, a simulation platform using real system data was developed, and new methodologies were compared with the state-of-the-art methods considering various scenarios. The experimental results show improvement in power modeling of servers, significant carbon reduction in load balancing of web applications, and significant profit-carbon improvement in HPC job scheduling

    Towards Zero Touch Next Generation Network Management

    Get PDF
    The current trend in user services places an ever-growing demand for higher data rates, near-real-time latencies, and near-perfect quality of service. To meet such demands, fundamental changes were made to the front and mid-haul and backbone networking segments servicing them. One of the main changes made was virtualizing the networking components to allow for faster deployment and reconfiguration when needed. However, adopting such technologies poses several challenges, such as improving the performance and efficiency of these systems by properly orchestrating the services to the ideal edge device. A second challenge is ensuring the backbone optical networking maximizes and maintains the throughput levels under more dynamically variant conditions. A third challenge is addressing the limitation of placement techniques in O-RAN. In this thesis, we propose using various optimization modeling and machine learning techniques in three segments of network systems towards lowering the need for human intervention targeting zero-touch networking. In particular, the first part of the thesis applies optimization modeling, heuristics, and segmentation to improve the locally driven orchestration techniques, which are used to place demands on edge devices throughput to ensure efficient and resilient placement decisions. The second part of the thesis proposes using reinforcement learning (RL) techniques on a nodal base to address the dynamic nature of demands within an optical networking paradigm. The RL techniques ensure blocking rates are kept to a minimum by tailoring the agents’ behavior based on each node\u27s demand intake throughout the day. The third part of the thesis proposes using transfer learning augmented reinforcement learning to drive a network slicing-based solution in O-RAN to address the stringent and divergent demands of 5G applications. The main contributions of the thesis consist of three broad parts. The first is developing optimal and heuristic orchestration algorithms that improve demands’ performance and reliability in an edge computing environment. The second is using reinforcement learning to determine the appropriate spectral placement for demands within isolated optical paths, ensuring lower fragmentation and better throughput utilization. The third is developing a heuristic controlled transfer learning augmented reinforcement learning network slicing in an O-RAN environment. Hence, ensuring improved reliability while maintaining lower complexity than traditional placement techniques

    VihreäIT metriikoiden analysointi sekä mittausviitekehyksen luonti Sonera Helsinki Datakeskus (HDC) projektille.

    Get PDF
    The two objectives of this thesis were to investigate and evaluate the most suitable set of energy efficiency metrics for Sonera Helsinki Data Center (HDC), and to analyze which energy efficient technologies could be implemented and in what order to gain most impact. Sustainable IT is a complex matter, and it has two components. First and the more complex matter is the energy efficiency and energy-proportionality of the IT environment. The second is the use of renewable energy sources. Both of these need to be addressed. This thesis is a theoretical study, and it focuses on energy efficiency. The use of off-site renewables is outside of the scope of this thesis. The main aim of this thesis is to improve energy efficiency through effective metric framework. In the final metric framework, metrics that target renewable energy usage in the data center are included as they are important from CO2 emission reduction perspective. The selection of energy efficient solutions in this thesis are examples from most important data center technology categories, and do not try to cover the whole array of different solutions to improve energy efficiency in a data center. The ontological goal is to present main energy efficiency metrics available in scientific discourse, and also present examples of energy efficient solutions in most energy consuming technology domains inside the data center. Even though some of the concepts are quite abstract, realism is taken into account in every analysis. The epistemology in this thesis is based on scientific articles that include empirical validation and scientific peer review. This forms the origin of the used knowledge and the nature of this knowledge. The findings from this thesis are considered valid and reliable based on the epistemology of scientific articles, and by using the actual planning documents of Sonera HDC. The reasoning in this thesis is done in abstracto, but there are many empirical results that qualify the results also as ´in concreto´. Findings are significant for Sonera HDC but they are also applicable for any general data center project or company seeking energy efficiency in their data centers.Lopputyöllä on kaksi päätavoitetta. Ensimmäinen tavoite on löytää sopivin mittausviitekehys energiatehokkuuden osoittamiseksi Sonera Helsinki Datakeskukselle (HDC). Toisena tavoitteena on analysoida, mitä energiatehokkaita ratkaisuja tulisi implementoida ja missä järjestyksessä, saavuttaakseen mahdollisimman ison vaikutuksen. Vihreä IT on monimutkainen asia ja samalla siihen liittyy kaksi eri komponenttia. Ensimmäisenä komponenttina, ja merkityksellisempänä sekä monimutkaisempana, on energiatehokkuus ja energian kulutuksen mukautuvuus suhteessa työkuormaan. Toinen komponentti vihreän IT:n osalta on uusiutuvien energialähteiden käyttäminen. Molemmat komponentit on huomioitava. Lopputyö on teoreettinen tutkimus. Lopputyön ontologinen tavoite on esittää keskeisimmät energiatehokkuusmittarit, jotka ovat saatavilla tieteellisessä keskustelussa, ja esittää myös esimerkkejä energiatehokkaista ratkaisuista teknologia-alueisiin, jotka kuluttavat eniten energiaa data keskuksissa. Vaikka osa esitetyistä ratkaisuista on melko abstraktissa todellisuudessa, realismi on pyritty ottamaan huomioon arvioita tehdessä. Epistemologisesti tämä lopputyö perustuu tieteellisiin artikkeleihin, joissa on tehty empiiristä validointia ja tiedeyhteisön vertaisarviointia tiedon totuusarvosta. Kirjoittaja pyrkii välttämään oman arvomaailman ja subjektiivisen näkemyksen tuomista analyysiin pyrkimällä enemmänkin arvioimaan ratkaisuja perustuen päätavoitteeseen, joka on sekä lisätä energiatehokkuutta että vähentää CO2 -päästöjä datakeskuksessa. Lopputyön löydökset todetaan valideiksi ja luotettaviksi, koska ne perustuvat tieteellisten artikkeleiden epistemologiaan ja siihen, että arvioinnin pohjana on käytetty todellisia Sonera HDC -projektin suunnitteludokumentteja. Päätelmät ja analyysit ovat abstrahoituja, mutta perustuvat empiirisiin tuloksiin, jotka koskevat käytännön tekemistä sekä valintoja. Löydökset ovat merkittäviä Sonera HDC -projektin kannalta, ja myös muille datakeskuksille, jotka haluavat toimia kestävän kehityksen pohjalta

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications
    corecore