453 research outputs found

    CoScal: Multi-faceted Scaling of Microservices with Reinforcement Learning

    Get PDF
    The emerging trend towards moving from monolithic applications to microservices has raised new performance challenges in cloud computing environments. Compared with traditional monolithic applications, the microservices are lightweight, fine-grained, and must be executed in a shorter time. Efficient scaling approaches are required to ensure microservices’ system performance under diverse workloads with strict Quality of Service (QoS) requirements and optimize resource provisioning. To solve this problem, we investigate the trade-offs between the dominant scaling techniques, including horizontal scaling, vertical scaling, and brownout in terms of execution cost and response time. We first present a prediction algorithm based on gradient recurrent units to accurately predict workloads assisting in scaling to achieve efficient scaling. Further, we propose a multi-faceted scaling approach using reinforcement learning called CoScal to learn the scaling techniques efficiently. The proposed CoScal approach takes full advantage of data-driven decisions and improves the system performance in terms of high communication cost and delay. We validate our proposed solution by implementing a containerized microservice prototype system and evaluated with two microservice applications. The extensive experiments demonstrate that CoScal reduces response time by 19%-29% and decreases the connection time of services by 16% when compared with the state-of-the-art scaling techniques for Sock Shop application. CoScal can also improve the number of successful transactions with 6%-10% for Stan’s Robot Shop application

    Microservices-based IoT Applications Scheduling in Edge and Fog Computing: A Taxonomy and Future Directions

    Full text link
    Edge and Fog computing paradigms utilise distributed, heterogeneous and resource-constrained devices at the edge of the network for efficient deployment of latency-critical and bandwidth-hungry IoT application services. Moreover, MicroService Architecture (MSA) is increasingly adopted to keep up with the rapid development and deployment needs of the fast-evolving IoT applications. Due to the fine-grained modularity of the microservices along with their independently deployable and scalable nature, MSA exhibits great potential in harnessing both Fog and Cloud resources to meet diverse QoS requirements of the IoT application services, thus giving rise to novel paradigms like Osmotic computing. However, efficient and scalable scheduling algorithms are required to utilise the said characteristics of the MSA while overcoming novel challenges introduced by the architecture. To this end, we present a comprehensive taxonomy of recent literature on microservices-based IoT applications scheduling in Edge and Fog computing environments. Furthermore, we organise multiple taxonomies to capture the main aspects of the scheduling problem, analyse and classify related works, identify research gaps within each category, and discuss future research directions.Comment: 35 pages, 10 figures, submitted to ACM Computing Survey

    Performance Evaluation Metrics for Cloud, Fog and Edge Computing: A Review, Taxonomy, Benchmarks and Standards for Future Research

    Get PDF
    Optimization is an inseparable part of Cloud computing, particularly with the emergence of Fog and Edge paradigms. Not only these emerging paradigms demand reevaluating cloud-native optimizations and exploring Fog and Edge-based solutions, but also the objectives require significant shift from considering only latency to energy, security, reliability and cost. Hence, it is apparent that optimization objectives have become diverse and lately Internet of Things (IoT)-specific born objectives must come into play. This is critical as incorrect selection of metrics can mislead the developer about the real performance. For instance, a latency-aware auto-scaler must be evaluated through latency-related metrics as response time or tail latency; otherwise the resource manager is not carefully evaluated even if it can reduce the cost. Given such challenges, researchers and developers are struggling to explore and utilize the right metrics to evaluate the performance of optimization techniques such as task scheduling, resource provisioning, resource allocation, resource scheduling and resource execution. This is challenging due to (1) novel and multi-layered computing paradigm, e.g., Cloud, Fog and Edge, (2) IoT applications with different requirements, e.g., latency or privacy, and (3) not having a benchmark and standard for the evaluation metrics. In this paper, by exploring the literature, (1) we present a taxonomy of the various real-world metrics to evaluate the performance of cloud, fog, and edge computing; (2) we survey the literature to recognize common metrics and their applications; and (3) outline open issues for future research. This comprehensive benchmark study can significantly assist developers and researchers to evaluate performance under realistic metrics and standards to ensure their objectives will be achieved in the production environments

    RAPID: Enabling Fast Online Policy Learning in Dynamic Public Cloud Environments

    Full text link
    Resource sharing between multiple workloads has become a prominent practice among cloud service providers, motivated by demand for improved resource utilization and reduced cost of ownership. Effective resource sharing, however, remains an open challenge due to the adverse effects that resource contention can have on high-priority, user-facing workloads with strict Quality of Service (QoS) requirements. Although recent approaches have demonstrated promising results, those works remain largely impractical in public cloud environments since workloads are not known in advance and may only run for a brief period, thus prohibiting offline learning and significantly hindering online learning. In this paper, we propose RAPID, a novel framework for fast, fully-online resource allocation policy learning in highly dynamic operating environments. RAPID leverages lightweight QoS predictions, enabled by domain-knowledge-inspired techniques for sample efficiency and bias reduction, to decouple control from conventional feedback sources and guide policy learning at a rate orders of magnitude faster than prior work. Evaluation on a real-world server platform with representative cloud workloads confirms that RAPID can learn stable resource allocation policies in minutes, as compared with hours in prior state-of-the-art, while improving QoS by 9.0x and increasing best-effort workload performance by 19-43%
    • …
    corecore