190 research outputs found

    Next generation network provider architecture demonstrator

    Get PDF
    This paper presents a next generation network demonstrator currently under deployment in Aveiro. The demonstrator supports mobile IP with fast handovers with integrated QoS and AAAC issues considerations. A monitoring system provides network information adequate for QoS management, and a specially built QoS Broker is able to manage multiple types of Access Routers. The demonstrator has been tested with some applications, and is currently under refinement

    Multimedia Traffic Engineering in Next Generation Networks

    Get PDF
    Due to high speed Internet and Multimedia applications, future wireless communication are expected to support multimedia traffic such as voice, video and text with a variety of Quality of Service (QoS) requirements and make efficient use of radio resources. Such kind of traffic requires high level of QoS guarantees. Traffic management is a process of regulating the traffic over network. Since, multimedia traffic is more sensitive, therefore it requires special measures while transmission, especially in wireless networks. There are different queuing disciplines which are used to police the traffic, the Priority Queue and RIO (RED with In/Out) are queuing disciplines, PQ is used to prioritize the traffic, and the later is used to drop the lower priority packets at the time of congestion. Proposed solution is the integration of Priority Queue with RIO, which will serve as a classifier to prioritize the traffic and then it will also serve as a scheduler by dropping lower priority traffic when the congestion state occur. Simulation results show that by applying proposed Traffic Management Strategy (PriRIO), it assigns stable bandwidth to the Multimedia Traffic Flow and enhances its throughput. It also shows that Packet Losses for Multimedia Traffic are very minor, that is, equivalent to none. Further, delay values for Multimedia traffic also remain below the Best Effort traffic flows. Thus, on the basis of these simulation results and analysis, PriRIO outperforms significantly, as compare to other Traffic Management Strategies

    A Testbed About Priority-Based Dynamic Connection Profiles in QoS Wireless Multimedia Networks

    Get PDF
    The ever-growing demand of high-quality broadband connectivity in mobile scenarios, as well as the Digital Divide discrimination, are boosting the development of more and more efficient wireless technologies. Despite their adaptability and relative small installation costs, wireless networks still lack a full bandwidth availability and are also subject to interference problems. In context of a Metropolitan Area Network serving a large number of users, a bandwidth increase can turn out to be neither feasible nor justified. In consequence, and in order to meet the needs of multimedia applications, bandwidth optimization techniques were designed and developed, such as Traffic Shaping, Policy-Based Traffic Management and Quality of Service (QoS). In this paper, QoS protocols are adopted and, in particular, priority-based dynamic profiles in a QoS wireless multimedia network. This technique allows to asssign different priorities to distinct applications, so as to rearrange service quality in a dynamic way and guarantee the desired performance to a given data flow

    Enhancing QoS provisioning and granularity in next generation internet

    Get PDF
    Next Generation IP technology has the potential to prevail, both in the access and in the core networks, as we are moving towards a multi-service, multimedia and high-speed networking environment. Many new applications, including the multimedia applications, have been developed and deployed, and demand Quality of Service (QoS) support from the Internet, in addition to the current best effort service. Therefore, QoS provisioning techniques in the Internet to guarantee some specific QoS parameters are more a requirement than a desire. Due to the large amount of data flows and bandwidth demand, as well as the various QoS requirements, scalability and fine granularity in QoS provisioning are required. In this dissertation, the end-to-end QoS provisioning mechanisms are mainly studied, in order to provide scalable services with fine granularity to the users, so that both users and network service providers can achieve more benefits from the QoS provisioned in the network. To provide the end-to-end QoS guarantee, single-node QoS provisioning schemes have to be deployed at each router, and therefore, in this dissertation, such schemes are studied prior to the study of the end-to-end QoS provisioning mechanisms. Specifically, the effective sharing of the output bandwidth among the large amount of data flows is studied, so that fairness in the bandwidth allocation among the flows can be achieved in a scalable fashion. A dual-rate grouping architecture is proposed in this dissertation, in which the granularity in rate allocation can be enhanced, while the scalability of the one-rate grouping architecture is still maintained. It is demonstrated that the dual-rate grouping architecture approximates the ideal per-flow based PFQ architecture better than the one-rate grouping architecture, and provides better immunity capability. On the end-to-end QoS provisioning, a new Endpoint Admission Control scheme for Diffserv networks, referred to as Explicit Endpoint Admission Control (EEAC), is proposed, in which the admission control decision is made by the end hosts based on the end-to-end performance of the network. A novel concept, namely the service vector, is introduced, by which an end host can choose different services at different routers along its data path. Thus, the proposed service provisioning paradigm decouples the end-to-end QoS provisioning from the service provisioning at each router, and the end-to-end QoS granularity in the Diffserv networks can be enhanced, while the implementation complexity of the Diffserv model is maintained. Furthermore, several aspects of the implementation of the EEAC and service vector paradigm, referred to as EEAC-SV, in the Diffserv architecture are also investigated. The performance analysis and simulation results demonstrate that the proposed EEAC-SV scheme, not only increases the benefit to the service users, but also enhances the benefit to the network service provider in terms of network resource utilization. The study also indicates that the proposed EEAC-SV scheme can provide a compatible and friendly networking environment to the conventional TCP flows, and the scheme can be deployed in the current Internet in an incremental and gradual fashion

    Open Access to Resource Management in Multimedia Networks

    Full text link
    The paper is dedicated to mechanisms for open access to resource management in the Internet Protocol (IP) multimedia networks. First we present the concept of IP Multimedia Subsystem (IMS) and explain the IMS functional architecture, principles of quality of service management and service control in IMS. Then we describe the idea behind the opening of network interfaces for third parties so that others besides the network operator can create and deploy services. Open Service Access (OSA) and Parlay appear to be the technologies for value-added service delivery in multimedia networks. In the paper we take a closer look to the Parlay/OSA interfaces that allow third party applications to access the resource management functions in IMS. OSA "Connectivity Manager" interfaces and OSA "Policy Management" interfaces are considered. Parlay X Web Services interfaces provide a higher level of abstraction than Parlay/OSA interfaces and gain an amazing amount of support among service developers. We address "Applicationdriven Quality of Service" Parlay X Web Service and "Policy" Parlay X Web Service also
    • …
    corecore