859 research outputs found

    A Survey on QoE-oriented Wireless Resources Scheduling

    Full text link
    Future wireless systems are expected to provide a wide range of services to more and more users. Advanced scheduling strategies thus arise not only to perform efficient radio resource management, but also to provide fairness among the users. On the other hand, the users' perceived quality, i.e., Quality of Experience (QoE), is becoming one of the main drivers within the schedulers design. In this context, this paper starts by providing a comprehension of what is QoE and an overview of the evolution of wireless scheduling techniques. Afterwards, a survey on the most recent QoE-based scheduling strategies for wireless systems is presented, highlighting the application/service of the different approaches reported in the literature, as well as the parameters that were taken into account for QoE optimization. Therefore, this paper aims at helping readers interested in learning the basic concepts of QoE-oriented wireless resources scheduling, as well as getting in touch with its current research frontier.Comment: Revised version: updated according to the most recent related literature; added references; corrected typo

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    FreeNet: Spectrum and Energy Harvesting Wireless Networks

    Full text link
    The dramatic mobile data traffic growth is not only resulting in the spectrum crunch but is also leading to exorbitant energy consumption. It is thus desirable to liberate mobile and wireless networks from the constraint of the spectrum scarcity and to rein in the growing energy consumption. This article introduces FreeNet, figuratively synonymous to "Free Network", which engineers the spectrum and energy harvesting techniques to alleviate the spectrum and energy constraints by sensing and harvesting spare spectrum for data communications and utilizing renewable energy as power supplies, respectively. Hence, FreeNet increases the spectrum and energy efficiency of wireless networks and enhances the network availability. As a result, FreeNet can be deployed to alleviate network congestion in urban areas, provision broadband services in rural areas, and upgrade emergency communication capacity. This article provides a brief analysis of the design of FreeNet that accommodates the dynamics of the spare spectrum and employs renewable energy

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Resource Management and Quality of Service Provisioning in 5G Cellular Networks

    Full text link
    With the commercial launch of 5G technologies and fast pace of expansion of cellular network infrastructure, it is expected that cellular and mobile networks traffic will exponentially increase. In addition, new services are expected to spread widely, such as the Internet of Things connected to mobile networks. This will add additional burden in terms of traffic load. As a result, some studies suggest that mobile traffic may increase more than 1000 times compared to the amount of traffic that is generated nowadays. This means that network resources for mobile services must be managed and controlled in a smart way, because resources are always limited, but the demand for services and the need for keeping user equipment always connected to mobile networks can be considered unlimited, leaving gap between huge service demands and available resources. In order to narrow this gap, major consideration should be given to the management of network resources to avoid network congestion and performance degradation during peak hour/s and traffic spikes, and allow access to network services to more customers when demand is high. On the other hand, guaranteeing quality of service requirements for the wide range of new services is another challenge that must be met in 5G networks. In this paper we will review 5G networks characteristics and specifications, then carry out a survey on resource management and QoS provisioning to improve and manage resource utilization in 5G networks.Comment: 21 pages, 8 figures, 3 table

    Cross-layer Design in Cognitive Radio Standards

    Full text link
    The growing demand for wireless applications and services on the one hand, and limited available radio spectrum on the other hand have made cognitive radio (CR) a promising solution for future mobile networks. It has attracted considerable attention by academia and industry since its introduction in 1999 and several relevant standards have been developed within the last decade. Cognitive radio is based on four main functions, spanning across more than one layer of OSI model. Therefore, solutions based on cognitive radio technology require cross layer (CL) designs for optimum performance. This article briefly reviews the basics of cognitive radio technology as an introduction and highlights the need for cross layer design in systems deploying CR technology. Then some of the published standards with CL characteristics are outlined in a later section, and in the final section some research examples of cross layer design ideas based on the existing CR standards conclude this article

    Data and Spectrum Trading Policies in a Trusted Cognitive Dynamic Network

    Full text link
    Future wireless networks will progressively displace service provisioning towards the edge to accommodate increasing growth in traffic. This paradigm shift calls for smart policies to efficiently share network resources and ensure service delivery. In this paper, we consider a cognitive dynamic network architecture (CDNA) where primary users (PUs) are rewarded for sharing their connectivities and acting as access points for secondary users (SUs). CDNA creates opportunities for capacity increase by network-wide harvesting of unused data plans and spectrum from different operators. Different policies for data and spectrum trading are presented based on centralized, hybrid and distributed schemes involving primary operator (PO), secondary operator (SO) and their respective end users. In these schemes, PO and SO progressively delegate trading to their end users and adopt more flexible cooperation agreements to reduce computational time and track available resources dynamically. A novel matching-with-pricing algorithm is presented to enable self-organized SU-PU associations, channel allocation and pricing for data and spectrum with low computational complexity. Since connectivity is provided by the actual users, the success of the underlying collaborative market relies on the trustworthiness of the connections. A behavioral-based access control mechanism is developed to incentivize/penalize honest/dishonest behavior and create a trusted collaborative network. Numerical results show that the computational time of the hybrid scheme is one order of magnitude faster than the benchmark centralized scheme and that the matching algorithm reconfigures the network up to three orders of magnitude faster than in the centralized scheme.Comment: 15 pages, 12 figures. A version of this paper has been published in IEEE/ACM Transactions on Networking, 201

    Leveraging Synergy of 5G SDWN and Multi-Layer Resource Management for Network Optimization

    Full text link
    Fifth-generation (5G) cellular wireless networks are envisioned to predispose service-oriented, flexible, and spectrum/energy-efficient edge-to-core infrastructure, aiming to offer diverse applications. Convergence of software-defined networking (SDN), software-defined radio (SDR) compatible with multiple radio access technologies (RATs), and virtualization on the concept of 5G software-defined wireless networking (5G-SDWN) is a promising approach to provide such a dynamic network. The principal technique behind the 5G-SDWN framework is the separation of the control and data planes, from the deep core entities to edge wireless access points (APs). This separation allows the abstraction of resources as transmission parameters of each user over the 5G-SDWN. In this user-centric and service-oriented environment, resource management plays a critical role to achieve efficiency and reliability. However, it is natural to wonder if 5G-SDWN can be leveraged to enable converged multi-layer resource management over the portfolio of resources, and reciprocally, if CML resource management can effectively provide performance enhancement and reliability for 5G-SDWN. We believe that replying to these questions and investigating this mutual synergy are not trivial, but multidimensional and complex for 5G-SDWN, which consists of different technologies and also inherits legacy generations of wireless networks. In this paper, we propose a flexible protocol structure based on three mentioned pillars for 5G-SDWN, which can handle all the required functionalities in a more crosslayer manner. Based on this, we demonstrate how the general framework of CML resource management can control the end user quality of experience. For two scenarios of 5G-SDWN, we investigate the effects of joint user-association and resource allocation via CML resource management to improve performance in a virtualized network
    • …
    corecore