1,171 research outputs found

    QoS multicast routing protocol oriented to cognitive network using competitive coevolutionary algorithm

    Get PDF
    The human intervention in the network management and maintenance should be reduced to alleviate the ever-increasing spatial and temporal complexity. By mimicking the cognitive behaviors of human being, the cognitive network improves the scalability, self-adaptation, self-organization, and self-protection in the network. To implement the cognitive network, the cognitive behaviors for the network nodes need to be carefully designed. Quality of service (QoS) multicast is an important network problem. Therefore, it is appealing to develop an effective QoS multicast routing protocol oriented to cognitive network. In this paper, we design the cognitive behaviors summarized in the cognitive science for the network nodes. Based on the cognitive behaviors, we propose a QoS multicast routing protocol oriented to cognitive network, named as CogMRT. It is a distributed protocol where each node only maintains local information. The routing search is in a hop by hop way. Inspired by the small-world phenomenon, the cognitive behaviors help to accumulate the experiential route information. Since the QoS multicast routing is a typical combinatorial optimization problem and it is proved to be NP-Complete, we have applied the competitive coevolutionary algorithm (CCA) for the multicast tree construction. The CCA adopts novel encoding method and genetic operations which leverage the characteristics of the problem. We implement and evaluate CogMRT and other two promising alternative protocols in NS2 platform. The results show that CogMRT has remarkable advantages over the counterpart traditional protocols by exploiting the cognitive favors

    Na neizrazitoj logici zasnovano upravljanje frekvencijom za ODMRP u mobilnim ad hoc mrežama

    Get PDF
    On Demand Multicast Routing Protocol (ODMRP) is a popular solution designed for ad hoc networks with mobile hosts. Its efficiency, simplicity, and robustness to mobility render it one of the most widely used multicast routing protocols in Mobile Ad hoc NETworks (MANET). In ODMRP, there is no input rate control for upper layer traffic. So, it’s possible that high dense traffic flow causes congestion in networks. In this work, an enhancement to ODMRP is proposed referred to as fuzzy logic based Rate Control ODMRP (FRC-ODMRP). FRC-ODMRP attempts to adapt the arrival rate from upper layers to the state in the network by using feedback information from receivers of the multicast group. Accordingly, source comes up with a decision whether to increase or decrease its transmission rate based on information collected from the receivers. In this research, delay and packet delivery ratio reconsidered as indicators of congestion in addition to number of received packets. Simulation results demonstrate that FRC-ODMRP achieves significant performance improvements in comparison to conventional ODMRP and QoS-ODMRP. Indeed, it efficiently handles simultaneous traffic flows such that no one could dominate available bandwidth of networks.On Demand Multicast Routing Protocol (ODMRP) popularno je rješenje namijenjeno ad hoc mrežama s mobilnim domaćinima. Efikasnost, jednostavnost i robusnost u smislu mobilnosti učini su ovu metodu jednom od najraširenijih multicast protokola u ad hoc mobilnim mrežam (eng. MANET). Kod ODMRP-a nema upravljanja ulaznom frekvencijom za promet višeg sloja. Zbog toga je moguće da gusti promet uzrokuje zagušenje u mrežama. U ovome je radu predstavljeno poboljšanje ODMRP-a nazvano ODMRP zasnovan na fuzzy logici (FRC-ODRMP). FRC-ODRMP pokušava prilagoditi dolazne signale iz viših slojeva stanju u mreži koristeći povratnu informaciju od primatelja iz multicast grupe. Prilikom istraživanja dodatno je uzet omjer kašnjenja i dostavljenih paketa kao pokazatelj zagušenosti mreže uz broj dostavljenih paketa. Simulacijski rezultati pokazuju kako FRC-ODMRP značajno poboljšava performanse u odnosu na konvencionalni ODMRP i Qos-ODMRP. Dodatno, simultani promet efikasno je upravljan tako da nitko ne može dominirati dostupnom propusnošću mreže

    A Study of Cross Layer Design compare with Layer Design for MANET

    Get PDF
    Mobile Ad – hoc networks (MANET) are becoming increasingly popular in wireless technology, especially for providing services in disaster area. Mobile users are looking forward to new technologies that allow them to communicate anytime, anywhere, and using any communication device. Mobile ad – hoc networks suffer from several performance limitations, especially related to excessive burden deriving from the layering approach for the TCP / IP protocol stack design. In fact, TCP / IP protocol stack originally designed for wired networks and it is not suitable for wireless and mobile ad hoc networks. In this paper, it focuses on cross layer network design which is especially for wireless and mobile ad hoc networks. The main objective is to how cross layer differ from layered design, cross layer design approaches, challenges of cross layer design and implementation of cross layer design based MANET. And also this article brief the readers an overview of cross layer concept while discussing different cross layer proposals given by researchers
    corecore