407 research outputs found

    Do I smell coffee? The tale of a 360º Mulsemedia experience

    Get PDF
    One of the main challenges in current multimedia networking environments is to find solutions to help accommodate the next generation of mobile application classes with stringent Quality of Service (QoS) requirements whilst enabling Quality of Experience (QoE) provisioning for users. One such application class, featured in this paper, is 360º mulsemedia—multiple sensorial media—which enriches 360º video by adding sensory effects that stimulate human senses beyond those of sight and hearing, such as the tactile and olfactory ones. In this paper, we present a conceptual framework for 360º mulsemedia delivery and a 360º mulsemedia-based prototype that enables users to experience 360º mulsemedia content. User evaluations revealed that higher video resolutions do not necessarily lead to the highest QoE levels in our experimental setup. Therefore, bandwidth savings can be leveraged with no detrimental impact on QoE

    Agile management and interoperability testing of SDN/NFV-enriched 5G core networks

    Get PDF
    In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Efficient Channel Modeling Methods for Mobile Communication Systems

    Get PDF
    Siirretty Doriast

    Demonstrating Immersive Media Delivery on 5G Broadcast and Multicast Testing Networks

    Get PDF
    This work presents eight demonstrators and one showcase developed within the 5G-Xcast project. They experimentally demonstrate and validate key technical enablers for the future of media delivery, associated with multicast and broadcast communication capabilities in 5th Generation (5G). In 5G-Xcast, three existing testbeds: IRT in Munich (Germany), 5GIC in Surrey (UK), and TUAS in Turku (Finland), have been developed into 5G broadcast and multicast testing networks, which enables us to demonstrate our vision of a converged 5G infrastructure with fixed and mobile accesses and terrestrial broadcast, delivering immersive audio-visual media content. Built upon the improved testing networks, the demonstrators and showcase developed in 5G-Xcast show the impact of the technology developed in the project. Our demonstrations predominantly cover use cases belonging to two verticals: Media & Entertainment and Public Warning, which are future 5G scenarios relevant to multicast and broadcast delivery. In this paper, we present the development of these demonstrators, the showcase, and the testbeds. We also provide key findings from the experiments and demonstrations, which not only validate the technical solutions developed in the project, but also illustrate the potential technical impact of these solutions for broadcasters, content providers, operators, and other industries interested in the future immersive media delivery.Comment: 16 pages, 22 figures, IEEE Trans. Broadcastin

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd

    Heterogeneous Cloud Systems Based on Broadband Embedded Computing

    Get PDF
    Computing systems continue to evolve from homogeneous systems of commodity-based servers within a single data-center towards modern Cloud systems that consist of numerous data-center clusters virtualized at the infrastructure and application layers to provide scalable, cost-effective and elastic services to devices connected over the Internet. There is an emerging trend towards heterogeneous Cloud systems driven from growth in wired as well as wireless devices that incorporate the potential of millions, and soon billions, of embedded devices enabling new forms of computation and service delivery. Service providers such as broadband cable operators continue to contribute towards this expansion with growing Cloud system infrastructures combined with deployments of increasingly powerful embedded devices across broadband networks. Broadband networks enable access to service provider Cloud data-centers and the Internet from numerous devices. These include home computers, smart-phones, tablets, game-consoles, sensor-networks, and set-top box devices. With these trends in mind, I propose the concept of broadband embedded computing as the utilization of a broadband network of embedded devices for collective computation in conjunction with centralized Cloud infrastructures. I claim that this form of distributed computing results in a new class of heterogeneous Cloud systems, service delivery and application enablement. To support these claims, I present a collection of research contributions in adapting distributed software platforms that include MPI and MapReduce to support simultaneous application execution across centralized data-center blade servers and resource-constrained embedded devices. Leveraging these contributions, I develop two complete prototype system implementations to demonstrate an architecture for heterogeneous Cloud systems based on broadband embedded computing. Each system is validated by executing experiments with applications taken from bioinformatics and image processing as well as communication and computational benchmarks. This vision, however, is not without challenges. The questions on how to adapt standard distributed computing paradigms such as MPI and MapReduce for implementation on potentially resource-constrained embedded devices, and how to adapt cluster computing runtime environments to enable heterogeneous process execution across millions of devices remain open-ended. This dissertation presents methods to begin addressing these open-ended questions through the development and testing of both experimental broadband embedded computing systems and in-depth characterization of broadband network behavior. I present experimental results and comparative analysis that offer potential solutions for optimal scalability and performance for constructing broadband embedded computing systems. I also present a number of contributions enabling practical implementation of both heterogeneous Cloud systems and novel application services based on broadband embedded computing

    Service-aware multi-resource allocation in software-defined next generation cellular networks

    Get PDF
    Şefik Şuayb Arslan (MEF Author)Network slicing is one of the major solutions needed to meet the requirements of next generation cellular networks, under one common network infrastructure, in supporting multiple vertical services provided by mobile network operators. Network slicing makes one shared physical network infrastructure appear as multiple logically isolated virtual networks dedicated to different service types where each Network Slice (NS) benefits from on-demand allocated resources. Typically, the available resources distributed among NSs are correlated and one needs to allocate them judiciously in order to guarantee the service, MNO, and overall system qualities. In this paper, we consider a joint resource allocation strategy that weights the significance of the resources per a given NS by leveraging the correlation structure of different quality-of-service (QoS) requirements of the services. After defining the joint resource allocation problem including the correlation structure, we propose three novel scheduling mechanisms that allocate available network resources to the generated NSs based on different type of services with different QoS requirements. Performance of the proposed schedulers are then investigated through Monte-Carlo simulations and compared with each other as well as against a traditional max-min fairness algorithm benchmark. The results reveal that our schedulers, which have different complexities, outperform the benchmark traditional method in terms of service-based and overall satisfaction ratios, while achieving different fairness index levels.WOS:000430793600019Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ1 - Q2ArticleUluslararası işbirliği ile yapılmayan - HAYIRMart2018YÖK - 2017-1
    corecore