4,323 research outputs found

    Advanced Multiple Access Schemes for Multimedia Traffic over Wireless Channels

    Get PDF
    To meet the anticipated demand for wireless access to the broadband Asynchronous Transfer Mode (ATM) network, the concept of wireless ATM has been proposed in 1994 [1]. One of the main challenges in the design of a wireless ATM network resides in the conception of a Medium Access Control (MAC) protocol that will handle the different ATM services while providing an efficient utilization of the wireless channel. In this thesis, we propose a new Adaptive Reservation TDMA (AR-TDMA) MAC protocol for wireless ATM networks. AR-TDMA combines the advantage of distributed access and centralized control for transporting Constant Bit Rate (CBR), Variable Bit Rate (VBR) and Available Bit Rate (ABR) traffic efficiently over a wireless channel. The contention slots's access is governed by two novel framed pseudo-Bayesian priority Aloha protocols that we introduce in this thesis. Either one of these protocols can minimize the contention delay and provide different access priorities for heterogeneous traffic. Analytical and simulation results indicate that the framed pseudo-Bayesian priority Aloha protocols offer a significant delay improvement for high priority packets with Poisson traffic, while low priority packets only experience a slight performance degradation. A detailed comparison and discussion of implementation and robustness issues is presented in this thesis to help the design engineer choose the right protocol that suits the application scenario. In the context of the AR-TDMA protocol, results show that the priority algorithms improve real-time traffic Quality-of-Service (QoS). The AR-TDMA resource allocation algorithm grants to terminals reserved access to the wireless ATM channel by considering their requested bandwidth and QoS. We propose scheduling algorithms for CBR, VBR and ABR traffic. Furthermore, we also introduce a method to dynamically adjust the number of uplink control slots per frame as a function of the estimated contention traffic. Finally, an algorithm is proposed to integrate these algorithms to provide ubiquitous wireless ATM services. Performance results show that the AR-TDMA MAC protocol can achieve high throughput in the range of 90 to 95% while maintaining reasonable QoS for all ATM services

    Synergy between adaptive channel coding and media access control for wireless ATM

    Get PDF
    In this paper, we propose mechanisms to exploit the synergy between the Media Access Control (MAC) layer and the physical layer for wireless ATM applications. For simplicity, the system considered consists of a single server and a single wireless ATM terminal. A number of virtual circuit connections (VC), with varying Quality of Service (QoS) requirements, are supported. We focus on two components of the wireless ATM system, namely the channel encoder and the ATM scheduler in the MAC layer. The channel encoder is responsible for protecting the ATM cells over the hostile radio channel while the ATM scheduler is responsible for allocating limited resources to the ATM cells for each virtual connection so as to meet the specified QoS requirements. We consider two configurations, namely System-I with isolated adaptive channel encoder and ATM scheduler, and System-II with bi-directional information exchange. It is found that significant performance improvement on the Cell Loss Rate (CLR) and the Mean Cell Delay (MCD) could be achieved for systems exploiting the synergy. © 1999 IEEE.published_or_final_versio

    Adaptive reservation TDMA protocol for wireless multimedia traffic

    Get PDF
    An Adaptive Reservation Time Division Multiple Access (AR-TDMA) control protocol for Wireless Asynchronous Transfer Mode (WATM) networks is proposed in this paper. AR-TDMA combines the advantages of distributed access and centralised control for transporting Constant Bit Rate (CBR), Variable Bit Rate (VBR) and Available Bit Rate (ABR) traffic efficiently over a wireless channel. The contention slots access for reservation requests is governed by two protocols, the Adaptive Framed Pseudo-Bayesian Aloha with Adaptive Slot Assignment (AFPBAASA) protocol and the Framed Pseudo-Bayesian Aloha with Adaptively Prioritised Controlled Capture (FPBAAPCC) protocol. Both protocols provide different access priorities to the control packets in order to improve the Quality-of-Service (QoS) offered to time sensitive connections. AR-TDMA also features a novel integrated resource allocation algorithm that efficiently schedules terminals’ reserved access to the wireless ATM channel by considering their requested bandwidth and QoS. Integration of CBR, voice, VBR, data and control traffic over the wireless ATM channel using the proposed AR-TDMA protocol is considered in the paper. The performance of the AR-TDMA in conjunction with the AFPBA-ASA protocol and FPBA-APCC protocol has been investigated and the simulation results are presented showing that the protocol satisfies the required QoS of each traffic category while providing a highly efficient utilisation of approximately 96% for the wireless ATM channel

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    E2MaC: an energy efficient MAC protocol for multimedia traffic

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of wireless interface of the mobile and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the wireless link and to minimise the amount of energy spend by the mobile. The main principles of the E2MaC protocol are to avoid unsuccessful actions, minimise the number of transitions, and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles. In the protocol the actions of the mobile are minimised. The base-station with plenty of energy performs actions in courtesy of the mobile. We have paid much attention in reducing the cost of a mobile for just being connected. The protocol is able to provide near-optimal energy efficiency (i.e. energy is only spent for the actual transfer) for a mobile within the constraints of the QoS of all connections in a cell, and only requires a small overhead
    corecore