5,266 research outputs found

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Interfering-aware QoS multipath routing for ad hoc wireless network

    Get PDF
    [[abstract]]Mobile nodes are interconnected by multihop routing paths consist of unstable radio links in ad hoc wireless network. It is complex and difficult to provide QoS routing in such network because of imprecise network information, insufficient bandwidth and dynamic topology. For improving network stability and throughput, multipath routing protocols are proposed. A sender node discovers multiple disjoined routing paths and spread traffic into multiple streams according to their delay or bandwidth. For real-time streaming, unstable throughput or insufficient bandwidth invites unexpected delay or jitter if it is a multimedia streaming. Some multipath routing protocols pre-evaluate available bandwidth of paths and select enough total bandwidth from them if real-time applications demand for QoS constraint. For minimizing the cost of these paths, a path with smaller hopcounts is prior selected. These disjoined paths are general too closed with each other and the total throughput cannot just be sum up because of "paths interfering". Discovering and selecting multiple high-interfering paths is ineffectual and the total available bandwidth is not precise. In this paper, we proposed an interfering-aware QoS multipath routing protocol for QoS-constraint multimedia and real-time applications in ad hoc wireless network. We apply a scheme to evaluate available bandwidth according to the network capacities with different media access control (MAC) protocols. A concept of "interfering ratio" of multipath is discussed and we evaluate the stability and throughput improvement by simulations.[[notice]]補正完畢[[conferencetype]]國際[[iscallforpapers]]Y[[conferencelocation]]Fukuoka, Japa

    MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Get PDF
    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.Díaz Santos, JR.; Lloret, J.; Jimenez, JM.; Sendra, S. (2014). MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture. Scientific World Journal. 2014. doi:10.1155/2014/913046S2014Lacuesta, R., Lloret, J., Garcia, M., & Peñalver, L. (2010). A Spontaneous Ad Hoc Network to Share WWW Access. EURASIP Journal on Wireless Communications and Networking, 2010(1). doi:10.1155/2010/232083Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 7(1), 32-48. doi:10.1109/comst.2005.1423333Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Zhou, C., & Maxemchuk, N. (2011). Distributed Bottleneck Flow Control in Mobile Ad Hoc Networks. Network Protocols and Algorithms, 3(1). doi:10.5296/npa.v3i1.576Zhang, R., Cai, L., Pan, J., & Shen, X. (Sherman). (2011). Resource management for video streaming in ad hoc networks. Ad Hoc Networks, 9(4), 623-634. doi:10.1016/j.adhoc.2010.08.012Tarique, M. (2010). ISSUES OF LONG-HOP AND SHORT-HOP ROUTING IN MOBILE AD HOC NETWORKS: A COMPREHENSIVE STUDY. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.430Abdrabou, A., & Zhuang, W. (2009). Statistical QoS routing for IEEE 802.11 multihop ad hoc networks. IEEE Transactions on Wireless Communications, 8(3), 1542-1552. doi:10.1109/twc.2008.080573Kandris, D., Tsagkaropoulos, M., Politis, I., Tzes, A., & Kotsopoulos, S. (2011). Energy efficient and perceived QoS aware video routing over Wireless Multimedia Sensor Networks. Ad Hoc Networks, 9(4), 591-607. doi:10.1016/j.adhoc.2010.09.00
    corecore