2,679 research outputs found

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Cross Layered Network Condition Aware Mobile-Wireless Multimedia Sensor Network Routing Protocol for Mission Critical Communication

    Get PDF
    The high pace emergence in wireless technologies have given rise to an immense demand towards Quality of Service (QoS) aware multimedia data transmission over mobile wireless multimedia sensor network (WMSN). Ensuring reliable communication over WMSN while fulfilling timely and optimal packet delivery over WMSN can be of great significance for emerging IoT ecosystem. With these motivations, in this paper a highly robust and efficient cross layered routing protocol named network condition aware mobile-WMSN routing protocol (NCAM-RP) has been developed. NCAM-RP introduces a proactive neighbour table management, congestion awareness, packet velocity estimation, dynamic link quality estimation (DLQE), and deadline sensitive service differentiation based multimedia traffic prioritization, and multi-constraints based best forwarding node selection mechanisms. These optimization measures have been applied on network layer, MAC layer and the physical layer of the protocol stack that eventually strengthen NCAM-RP to enable QoS-aware multimedia data transmission over WMSNs. The proposed NCAM-RP protocol intends to optimize real time mission critical (even driven) multimedia data (RTMD) transmission while ensuring best feasible resource allocation to the non-real time (NRT) data traffic over WMSNs. NCAM-RP has outperform RPAR based routing scheme in terms of higher data delivery, lower packet drops and deadline miss ratio. It signifies that NCAM-RP can ensure minimal retransmission that eventually can reduce energy consumption, delay and computational overheads. Being the mobility based WMSN protocol, NCAM-RP can play significant role in IoT ecosystem

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy
    corecore