1,674 research outputs found

    AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges and Future Perspectives

    Get PDF

    Scheduling in cloud and fog architecture: identification of limitations and suggestion of improvement perspectives

    Get PDF
    Application execution required in cloud and fog architectures are generally heterogeneous in terms of device and application contexts. Scaling these requirements on these architectures is an optimization problem with multiple restrictions. Despite countless efforts, task scheduling in these architectures continue to present some enticing challenges that can lead us to the question how tasks are routed between different physical devices, fog nodes and cloud. In fog, due to its density and heterogeneity of devices, the scheduling is very complex and in the literature, there are still few studies that have been conducted. However, scheduling in the cloud has been widely studied. Nonetheless, many surveys address this issue from the perspective of service providers or optimize application quality of service (QoS) levels. Also, they ignore contextual information at the level of the device and end users and their user experiences. In this paper, we conducted a systematic review of the literature on the main task by: scheduling algorithms in the existing cloud and fog architecture; studying and discussing their limitations, and we explored and suggested some perspectives for improvement.Calouste Gulbenkian Foundation, PhD scholarship No.234242, 2019.info:eu-repo/semantics/publishedVersio

    Computation Offloading and Scheduling in Edge-Fog Cloud Computing

    Get PDF
    Resource allocation and task scheduling in the Cloud environment faces many challenges, such as time delay, energy consumption, and security. Also, executing computation tasks of mobile applications on mobile devices (MDs) requires a lot of resources, so they can offload to the Cloud. But Cloud is far from MDs and has challenges as high delay and power consumption. Edge computing with processing near the Internet of Things (IoT) devices have been able to reduce the delay to some extent, but the problem is distancing itself from the Cloud. The fog computing (FC), with the placement of sensors and Cloud, increase the speed and reduce the energy consumption. Thus, FC is suitable for IoT applications. In this article, we review the resource allocation and task scheduling methods in Cloud, Edge and Fog environments, such as traditional, heuristic, and meta-heuristics. We also categorize the researches related to task offloading in Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC), and Mobile Fog Computing (MFC). Our categorization criteria include the issue, proposed strategy, objectives, framework, and test environment.

    A Self-adaptive Agent-based System for Cloud Platforms

    Full text link
    Cloud computing is a model for enabling on-demand network access to a shared pool of computing resources, that can be dynamically allocated and released with minimal effort. However, this task can be complex in highly dynamic environments with various resources to allocate for an increasing number of different users requirements. In this work, we propose a Cloud architecture based on a multi-agent system exhibiting a self-adaptive behavior to address the dynamic resource allocation. This self-adaptive system follows a MAPE-K approach to reason and act, according to QoS, Cloud service information, and propagated run-time information, to detect QoS degradation and make better resource allocation decisions. We validate our proposed Cloud architecture by simulation. Results show that it can properly allocate resources to reduce energy consumption, while satisfying the users demanded QoS

    Microservices-based IoT Applications Scheduling in Edge and Fog Computing: A Taxonomy and Future Directions

    Full text link
    Edge and Fog computing paradigms utilise distributed, heterogeneous and resource-constrained devices at the edge of the network for efficient deployment of latency-critical and bandwidth-hungry IoT application services. Moreover, MicroService Architecture (MSA) is increasingly adopted to keep up with the rapid development and deployment needs of the fast-evolving IoT applications. Due to the fine-grained modularity of the microservices along with their independently deployable and scalable nature, MSA exhibits great potential in harnessing both Fog and Cloud resources to meet diverse QoS requirements of the IoT application services, thus giving rise to novel paradigms like Osmotic computing. However, efficient and scalable scheduling algorithms are required to utilise the said characteristics of the MSA while overcoming novel challenges introduced by the architecture. To this end, we present a comprehensive taxonomy of recent literature on microservices-based IoT applications scheduling in Edge and Fog computing environments. Furthermore, we organise multiple taxonomies to capture the main aspects of the scheduling problem, analyse and classify related works, identify research gaps within each category, and discuss future research directions.Comment: 35 pages, 10 figures, submitted to ACM Computing Survey
    corecore