129 research outputs found

    Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks

    Full text link
    In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of multiple eavesdroppers, where CUs transmit their data packets to CBS under a primary user's quality of service (QoS) constraint while the eavesdroppers attempt to intercept the cognitive transmissions from CUs to CBS. We investigate the physical-layer security against eavesdropping attacks in the cognitive radio network and propose the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint. Specifically, a cognitive user (CU) that satisfies the primary QoS requirement and maximizes the achievable secrecy rate of cognitive transmissions is scheduled to transmit its data packet. For the comparison purpose, we also examine the traditional multiuser scheduling and the artificial noise schemes. We analyze the achievable secrecy rate and intercept probability of the traditional and proposed multiuser scheduling schemes as well as the artificial noise scheme in Rayleigh fading environments. Numerical results show that given a primary QoS constraint, the proposed multiuser scheduling scheme generally outperforms the traditional multiuser scheduling and the artificial noise schemes in terms of the achievable secrecy rate and intercept probability. In addition, we derive the diversity order of the proposed multiuser scheduling scheme through an asymptotic intercept probability analysis and prove that the full diversity is obtained by using the proposed multiuser scheduling.Comment: 12 pages. IEEE Transactions on Communications, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    QoS-Aware Enhanced-Security for TDMA Transmissions from Buffered Source Nodes

    Get PDF

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore