882 research outputs found

    Improving Energy Efficiency for IoT Communications in 5G Networks

    Get PDF
    Increase in number of Internet of Things (IoT) devices is quickly changing how mobile networks are being used by shifting more usage to uplink transmissions rather than downlink transmissions. Currently, mobile network uplinks utilize Single Carrier Frequency Division Multiple Access (SC-FDMA) schemes due to the low Peak to Average Power Ratio (PAPR) when compared to Orthogonal Frequency Division Multiple Access (OFDMA). In an IoT perspective, power ratios are highly important in effective battery usage since devices are typically resource-constrained. Fifth Generation (5G) mobile networks are believed to be the future standard network that will handle the influx of IoT device uplinks while preserving the quality of service (QoS) that current Long Term Evolution Advanced (LTE-A) networks provide. In this paper, the Enhanced OEA algorithm was proposed and simulations showed a reduction in the device energy consumption and an increase in the power efficiency of uplink transmissions while preserving the QoS rate provided with SC-FDMA in 5G networks. Furthermore, the computational complexity was reduced through insertion of a sorting step prior to resource allocation

    Energy Efficient Reduced Complexity Multi-Service, Multi-Channel Scheduling Techniques

    Get PDF
    The need for energy efficient communications is essential in current and next-generation wireless communications systems. A large component of energy expenditure in mobile devices is in the mobile radio interface. Proper scheduling and resource allocation techniques that exploit instantaneous and long-term average knowledge of the channel, queue state and quality of service parameters can be used to improve the energy efficiency of communication. This thesis focuses on exploiting queue and channel state information as well as quality of service parameters in order to design energy efficient scheduling techniques. The proposed designs are for multi-stream, multi-channel systems and in general have high computational complexity. The large contributions of this thesis are in both the design of optimal/near-optimal scheduling/resource allocation schemes for these systems as well as proposing complexity reduction methods in their design. Methods are proposed for both a MIMO downlink system as well as an LTE uplink system. The effect of power efficiency on quality of service parameters is well studied as well as complexity/efficiency comparisons between optimal/near optimal allocation

    Resource Allocation in Uplink Long Term Evolution

    Get PDF
    One of the most crucial goals of future cellular systems is to minimize transmission power while increasing system performance. This master thesis work presents two channel-queue-aware scheduling schemes to allocate channels among active users in uplink LTE. Transmission power, packet delays and data rates are three of the most important criteria critically affecting the resource allocation designs. Therefore, each of these two scheduling algorithms proposes a practical method that assigns resources in such a way so as to optimally maximize data rate and minimize transmission power and packet delays while ensuring the QoS requirements. After converting the resource allocation problem into an optimization problem, the objective function and associated constraints are derived. Due to the contiguity constraint, which is imposed by SC-FDMA in uplink LTE, binary integer programming is employed to solve the optimization problem. Also the heuristic algorithms that approximate optimal schemes are presented to decrease the algorithm complexity

    Massive Non-Orthogonal Multiple Access for Cellular IoT: Potentials and Limitations

    Full text link
    The Internet of Things (IoT) promises ubiquitous connectivity of everything everywhere, which represents the biggest technology trend in the years to come. It is expected that by 2020 over 25 billion devices will be connected to cellular networks; far beyond the number of devices in current wireless networks. Machine-to-Machine (M2M) communications aims at providing the communication infrastructure for enabling IoT by facilitating the billions of multi-role devices to communicate with each other and with the underlying data transport infrastructure without, or with little, human intervention. Providing this infrastructure will require a dramatic shift from the current protocols mostly designed for human-to-human (H2H) applications. This article reviews recent 3GPP solutions for enabling massive cellular IoT and investigates the random access strategies for M2M communications, which shows that cellular networks must evolve to handle the new ways in which devices will connect and communicate with the system. A massive non-orthogonal multiple access (NOMA) technique is then presented as a promising solution to support a massive number of IoT devices in cellular networks, where we also identify its practical challenges and future research directions.Comment: To appear in IEEE Communications Magazin

    Efficient Scheduling Algorithms for Wireless Resource Allocation and Virtualization in Wireless Networks

    Get PDF
    The continuing growth in demand for better mobile broadband experiences has motivated rapid development of radio-access technologies to support high data rates and improve quality of service (QoS) and quality of experience (QoE) for mobile users. However, the modern radio-access technologies pose new challenges to mobile network operators (MNO) and wireless device designers such as reducing the total cost of ownership while supporting high data throughput per user, and extending battery life-per-charge of the mobile devices. In this thesis, a variety of optimization techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into two parts. In the first part, the challenge of extending battery life-per-charge is addressed. Optimal and suboptimal power-efficient schedulers that minimize the total transmit power and meet the QoS requirements of the users are presented. The second outlines the benefits and challenges of deploying wireless resource virtualization (WRV) concept as a promising solution for satisfying the growing demand for mobile data and reducing capital and operational costs. First, a WRV framework is proposed for single cell zone that is able to centralize and share the spectrum resources between multiple MNOs. Consequently, several WRV frameworks are proposed, which virtualize the spectrum resource of the entire network for cloud radio access network (C-RAN)- one of the front runners for the next generation network architecture. The main contributions of this thesis are in designing optimal and suboptimal solutions for the aforementioned challenges. In most cases, the optimal solutions suffer from high complexity, and therefore low-complexity suboptimal solutions are provided for practical systems. The optimal solutions are used as benchmarks for evaluating the suboptimal solutions. The results prove that the proposed solutions effectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks

    Performance Evaluation of Low Density Spreading Multiple Access

    Get PDF
    In this paper, we evaluate the performance of Multicarrier-Low Density Spreading Multiple Access (MC-LDSMA) as a multiple access technique for mobile communication systems. The MC-LDSMA technique is compared with current multiple access techniques, OFDMA and SC-FDMA. The performance is evaluated in terms of cubic metric, block error rate, spectral efficiency and fairness. The aim is to investigate the expected gains of using MC-LDSMA in the uplink for next generation cellular systems. The simulation results of the link and system-level performance evaluation show that MC-LDSMA has significant performance improvements over SC-FDMA and OFDMA. It is shown that using MC-LDSMA can considerably reduce the required transmission power and increase the spectral efficiency and fairness among the users

    Resource Allocation for Energy-Efficient Device-to-Device Communication in 4G Networks

    Full text link
    Device-to-device (D2D) communications as an underlay of a LTE-A (4G) network can reduce the traffic load as well as power consumption in cellular networks by way of utilizing peer-to-peer links for users in proximity of each other. This would enable other cellular users to increment their traffic, and the aggregate traffic for all users can be significantly increased without requiring additional spectrum. However, D2D communications may increase interference to cellular users (CUs) and force CUs to increase their transmit power levels in order to maintain their required quality-of-service (QoS). This paper proposes an energy-efficient resource allocation scheme for D2D communications as an underlay of a fully loaded LTE-A (4G) cellular network. Simulations show that the proposed scheme allocates cellular uplink resources (transmit power and channel) to D2D pairs while maintaining the required QoS for D2D and cellular users and minimizing the total uplink transmit power for all users.Comment: 2014 7th International Symposium on Telecommunications (IST'2014
    corecore