263 research outputs found

    WiLiTV: A Low-Cost Wireless Framework for Live TV Services

    Full text link
    With the evolution of HDTV and Ultra HDTV, the bandwidth requirement for IP-based TV content is rapidly increasing. Consumers demand uninterrupted service with a high Quality of Experience (QoE). Service providers are constantly trying to differentiate themselves by innovating new ways of distributing content more efficiently with lower cost and higher penetration. In this work, we propose a cost-efficient wireless framework (WiLiTV) for delivering live TV services, consisting of a mix of wireless access technologies (e.g. Satellite, WiFi and LTE overlay links). In the proposed architecture, live TV content is injected into the network at a few residential locations using satellite dishes. The content is then further distributed to other homes using a house-to-house WiFi network or via an overlay LTE network. Our problem is to construct an optimal TV distribution network with the minimum number of satellite injection points, while preserving the highest QoE, for different neighborhood densities. We evaluate the framework using realistic time-varying demand patterns and a diverse set of home location data. Our study demonstrates that the architecture requires 75 - 90% fewer satellite injection points, compared to traditional architectures. Furthermore, we show that most cost savings can be obtained using simple and practical relay routing solutions

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    A WiFi-based Reliable Network Architecture for Rural Regions

    Get PDF
    WiFi is being considered as an attractive option in providing low cost Internet connectivity to rural areas, and thereby reducing Digital Divide with urban areas. Most of the WiFi-based Long Distance network architectures extend Internet to rural regions through a single gateway node which is connected to high speed Internet. If the gateway node fails in such single gateway-based rural networks, the entire network gets collapsed. In this paper, we propose a reliable and low-cost WiFi based rural network architecture using multi-gateway concept. The proposed network architecture also allows load balancing among the available gateways. In such multi-gateway architecture, the network recovers from gateway failure and reestablishes the ongoing communication within 2-4 seconds time. The simulation results in NS-2 validate the claims of the paperKeywords—Digital Divide, WiFi, WiFi based Long Distance Network
    corecore