1,127 research outputs found

    QoE Modelling, Measurement and Prediction: A Review

    Full text link
    In mobile computing systems, users can access network services anywhere and anytime using mobile devices such as tablets and smart phones. These devices connect to the Internet via network or telecommunications operators. Users usually have some expectations about the services provided to them by different operators. Users' expectations along with additional factors such as cognitive and behavioural states, cost, and network quality of service (QoS) may determine their quality of experience (QoE). If users are not satisfied with their QoE, they may switch to different providers or may stop using a particular application or service. Thus, QoE measurement and prediction techniques may benefit users in availing personalized services from service providers. On the other hand, it can help service providers to achieve lower user-operator switchover. This paper presents a review of the state-the-art research in the area of QoE modelling, measurement and prediction. In particular, we investigate and discuss the strengths and shortcomings of existing techniques. Finally, we present future research directions for developing novel QoE measurement and prediction technique

    Large-Scale Measurements and Prediction of DC-WAN Traffic

    Get PDF
    Large cloud service providers have built an increasing number of geo-distributed data centers (DCs) connected by Wide Area Networks (WANs). These DC-WANs carry both high-priority traffic from interactive services and low-priority traffic from bulk transfers. Given that a DC-WAN is an expensive resource, providers often manage it via traffic engineering algorithms that rely on accurate predictions of inter-DC high-priority (delay-sensitive) traffic. In this article, we perform a large-scale measurement study of high-priority inter-DC traffic from Baidu. We measure how inter-DC traffic varies across their global DC-WAN and show that most existing traffic prediction methods either cannot capture the complex traffic dynamics or overlook traffic interrelations among DCs. Building on our measurements, we propose the In terrelated- Te mporal G raph Convolutional Net work (IntegNet) model for inter-DC traffic prediction. In contrast to prior efforts, our model exploits both temporal traffic patterns and inferred co-dependencies between DC pairs. IntegNet forecasts the capacity needed for high-priority traffic demands by accounting for the balance between resource provisioning (i.e., allocating resources exceeding actual demand) and QoS losses (i.e., allocating fewer resources than actual demand). Our experiments show that IntegNet can keep a very limited QoS loss, while also reducing overprovisioning by up to 42.1% compared to the state-of-the-art and up to 66.2% compared to the traditional method used in DC-WAN traffic engineering

    Outlier-Resilient Web Service QoS Prediction

    Get PDF
    The proliferation of Web services makes it difficult for users to select the most appropriate one among numerous functionally identical or similar service candidates. Quality-of-Service (QoS) describes the non-functional characteristics of Web services, and it has become the key differentiator for service selection. However, users cannot invoke all Web services to obtain the corresponding QoS values due to high time cost and huge resource overhead. Thus, it is essential to predict unknown QoS values. Although various QoS prediction methods have been proposed, few of them have taken outliers into consideration, which may dramatically degrade the prediction performance. To overcome this limitation, we propose an outlier-resilient QoS prediction method in this paper. Our method utilizes Cauchy loss to measure the discrepancy between the observed QoS values and the predicted ones. Owing to the robustness of Cauchy loss, our method is resilient to outliers. We further extend our method to provide time-aware QoS prediction results by taking the temporal information into consideration. Finally, we conduct extensive experiments on both static and dynamic datasets. The results demonstrate that our method is able to achieve better performance than state-of-the-art baseline methods.Comment: 12 pages, to appear at the Web Conference (WWW) 202

    Decision support for personalized cloud service selection through multi-attribute trustworthiness evaluation

    Get PDF
    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment. © 2014 Ding et al

    An adaptive admission control and load balancing algorithm for a QoS-aware Web system

    Get PDF
    The main objective of this thesis focuses on the design of an adaptive algorithm for admission control and content-aware load balancing for Web traffic. In order to set the context of this work, several reviews are included to introduce the reader in the background concepts of Web load balancing, admission control and the Internet traffic characteristics that may affect the good performance of a Web site. The admission control and load balancing algorithm described in this thesis manages the distribution of traffic to a Web cluster based on QoS requirements. The goal of the proposed scheduling algorithm is to avoid situations in which the system provides a lower performance than desired due to servers' congestion. This is achieved through the implementation of forecasting calculations. Obviously, the increase of the computational cost of the algorithm results in some overhead. This is the reason for designing an adaptive time slot scheduling that sets the execution times of the algorithm depending on the burstiness that is arriving to the system. Therefore, the predictive scheduling algorithm proposed includes an adaptive overhead control. Once defined the scheduling of the algorithm, we design the admission control module based on throughput predictions. The results obtained by several throughput predictors are compared and one of them is selected to be included in our algorithm. The utilisation level that the Web servers will have in the near future is also forecasted and reserved for each service depending on the Service Level Agreement (SLA). Our load balancing strategy is based on a classical policy. Hence, a comparison of several classical load balancing policies is also included in order to know which of them better fits our algorithm. A simulation model has been designed to obtain the results presented in this thesis

    Machine learning adaptive computational capacity prediction for dynamic resource management in C-RAN

    Get PDF
    Efficient computational resource management in 5G Cloud Radio Access Network (C-RAN)environments is a challenging problem because it has to account simultaneously for throughput, latency,power efficiency, and optimization tradeoffs. The assumption of a fixed computational capacity at thebaseband unit (BBU) pools may result in underutilized or oversubscribed resources, thus affecting the overallQuality of Service (QoS). As resources are virtualized at the BBU pools, they could be dynamically instan-tiated according to the required computational capacity (RCC). In this paper, a new strategy for DynamicResource Management with Adaptive Computational capacity (DRM-AC) using machine learning (ML)techniques is proposed. Three ML algorithms have been tested to select the best predicting approach: supportvector machine (SVM), time-delay neural network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average of unused resources by 96 %, but there is still QoS degradation when RCC is higherthan the predicted computational capacity (PCC). To further improve, two new strategies are proposed andtested in a realistic scenario: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with error shifting(DRM-AC-ES), reducing the average of unsatisfied resources by 98 % and 99.9 % compared to the DRM-AC, respectivelyThis work was supported in part by the Spanish ministry of science through the project CRIN-5G (RTI2018-099880-B-C32) withERDF (European Regional Development Fund) and in part by the UPC through COST CA15104 IRACON EU Project and theFPI-UPC-2018 Grant.Peer ReviewedPostprint (published version
    • …
    corecore