14 research outputs found

    Quality of service management for non-guaranteed networks

    Get PDF
    The increasing dominance of multimedia communication posed new requirements for the underlying systems. Multimedia data, formally called continuous media, has time constraints that impose real time limitations for their transmission. Certain levels of service, called Quality of Service (QoS), need to be considered when handling continuous media. The present work utilizes QoS concepts for networks that do not have inherent QoS support. The thesis aims at verifying the possibility of having QoS-controlled communication on non-guaranteed networks. A basic QoS architecture is designed where already existing QoS concepts are adapted to work with non-guaranteed networks. The architecture provides the facilities of QoS specification, mapping, admission, maintenance, monitoring and notification. In addition, a new concept for predictive QoS admission is introduced. The proposed architecture was verified using a prototype system. The results showed an increased percentage of continuous media that arrive on time to their receivers (good put) with higher network loads. The increased good put was at the expense of high network overhead

    Flexible Supervised Autonomy for Exploration in Subterranean Environments

    Full text link
    While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.Comment: Field Robotics special issue: DARPA Subterranean Challenge, Advancement and Lessons Learned from the Final

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Data Routing for Mobile Internet of Things Applications

    Get PDF
    The Internet of things (IoT) represents a new era of networking, it envisions the Internet of the future where objects or “Things” are seamlessly connected to the Internet providing various services to the community. Countless applications can benefit from these new services and some of them have already come to life especially in healthcare and smart environments. The full realization of the IoT can only be achieved by having relevant standards that enable the integration of these new services with the Internet. The IEEE 802.15.4, 6LoWPAN and IPv6 standards define the framework for wireless sensor networks (WSN) to run using limited resources but still connect to the Internet and use IP addresses. The Internet engineering task force (IETF) developed a routing protocol for low-power and lossy networks (LLN) to provide bidirectional connectivity throughout the network, this routing protocol for LLNs (RPL) was standardized in RFC6550 in 2012 making it the standard routing protocol for IoT. With all the bright features and new services that come with the futuristic IoT applications, new challenges present themselves calling for the need to address them and provide efficient approaches to manage them. One of the most crucial challenges that faces data routing is the presence of mobile nodes, it affects energy consumption, end-to-end delay, throughput, latency and packet delivery ratio (PDR). This thesis addresses mobility issues from the data routing point of view, and presents a number of enhancements to the existing protocols in both mesh-under and route-over routing approaches, along with an introduction to relevant standards and protocols, and a literature review of the state of the art in research. A dynamic cluster head election protocol (DCHEP) is proposed to improve network availability and energy efficiency for mobile WSNs under the beacon-enabled IEEE 802.15.4 standard. The proposed protocol is developed and simulated using CASTALIA/OMNET++ with a realistic radio model and node behaviour. DCHEP improves the network availability and lifetime and maintains cluster hierarchy in a proactive manner even in a mobile WSN where all the nodes including cluster heads (CHs) are mobile, this is done by dynamically switching CHs allowing nodes to act as multiple backup cluster heads (BCHs) with different priorities based on their residual energy and connectivity to other clusters. DCHEP is a flexible and scalable solution targeted for dense WSNs with random mobility. The proposed protocol achieves an average of 33% and 26% improvement to the availability and energy efficiency respectively compared with the original standard. Moving to network routing, an investigation of the use of RPL in dynamic networks is presented to provide an enhanced RPL for different applications with dynamic mobility and diverse network requirements. This implementation of RPL is designed with a new dynamic objective-function (D-OF) to improve the PDR, end-to-end delay and energy consumption while maintaining low packet overhead and loop-avoidance. A controlled reverse-trickle timer is proposed based on received signal strength identification (RSSI) readings to maintain high responsiveness with minimum overhead, and consult the objective function when a movement or inconsistency is detected to help nodes make an informed decision. Simulations are done using Cooja with different mobility scenarios for healthcare and animal tracking applications considering multi-hop routing. The results show that the proposed dynamic RPL (D-RPL) adapts to different mobility scenarios and has a higher PDR, slightly lower end-to-end delay and reasonable energy consumption compared to related existing protocols. Many recent applications require the support of mobility and an optimised approach to efficiently handle mobile nodes is essential. A game scenario is formulated where nodes compete for network resources in a selfish manner, to send their data packets to the sink node. Each node counts as a player in the noncooperative game. The optimal solution for the game is found using the unique Nash equilibrium (NE) where a node cannot improve its pay-off function while other players use their current strategy. The proposed solution aims to present a strategy to control different parameters of mobile nodes (or static nodes in a mobile environment) including transmission rate, timers and operation mode in order to optimize the performance of RPL under mobility in terms of PDR, throughput, energy consumption and end-to-end-delay. The proposed solution monitors the mobility of nodes based on RSSI readings, it also takes into account the priorities of different nodes and the current level of noise in order to select the preferred transmission rate. An optimised protocol called game-theory based mobile RPL (GTM-RPL) is implemented and tested in multiple scenarios with different network requirements for Internet of Things applications. Simulation results show that in the presence of mobility, GTM-RPL provides a flexible and adaptable solution that improves throughput whilst maintaining lower energy consumption showing more than 10% improvement compared to related work. For applications with high throughput requirements, GTM-RPL shows a significant advantage with more than 16% improvement in throughput and 20% improvement in energy consumption. Since the standardization of RPL, the volume of RPL-related research has increased exponentially and many enhancements and studies were introduced to evaluate and improve this protocol. However, most of these studies focus on simulation and have little interest in practical evaluation. Currently, six years after the standardization of RPL, it is time to put it to a practical test in real IoT applications and evaluate the feasibility of deploying and using RPL at its current state. A hands-on practical testing of RPL in different scenarios and under different conditions is presented to evaluate its efficiency in terms of packet delivery ratio (PDR), throughput, latency and energy consumption. In order to look at the current-state of routing in IoT applications, a discussion of the main aspects of RPL and the advantages and disadvantages of using it in different IoT applications is presented. In addition to that, a review of the available research related to RPL is conducted in a systematic manner, based on the enhancement area and the service type. Finally, a comparison of related RPL-based protocols in terms of energy efficiency, reliability, flexibility, robustness and security is presented along with conclusions and a discussion of the possible future directions of RPL and its applicability in the Internet of the future

    Probabilistic Human-Robot Information Fusion

    Get PDF
    This thesis is concerned with combining the perceptual abilities of mobile robots and human operators to execute tasks cooperatively. It is generally agreed that a synergy of human and robotic skills offers an opportunity to enhance the capabilities of today’s robotic systems, while also increasing their robustness and reliability. Systems which incorporate both human and robotic information sources have the potential to build complex world models, essential for both automated and human decision making. In this work, humans and robots are regarded as equal team members who interact and communicate on a peer-to-peer basis. Human-robot communication is addressed using probabilistic representations common in robotics. While communication can in general be bidirectional, this work focuses primarily on human-to-robot information flow. More specifically, the approach advocated in this thesis is to let robots fuse their sensor observations with observations obtained from human operators. While robotic perception is well-suited for lower level world descriptions such as geometric properties, humans are able to contribute perceptual information on higher abstraction levels. Human input is translated into the machine representation via Human Sensor Models. A common mathematical framework for humans and robots reinforces the notion of true peer-to-peer interaction. Human-robot information fusion is demonstrated in two application domains: (1) scalable information gathering, and (2) cooperative decision making. Scalable information gathering is experimentally demonstrated on a system comprised of a ground vehicle, an unmanned air vehicle, and two human operators in a natural environment. Information from humans and robots was fused in a fully decentralised manner to build a shared environment representation on multiple abstraction levels. Results are presented in the form of information exchange patterns, qualitatively demonstrating the benefits of human-robot information fusion. The second application domain adds decision making to the human-robot task. Rational decisions are made based on the robots’ current beliefs which are generated by fusing human and robotic observations. Since humans are considered a valuable resource in this context, operators are only queried for input when the expected benefit of an observation exceeds the cost of obtaining it. The system can be seen as adjusting its autonomy at run-time based on the uncertainty in the robots’ beliefs. A navigation task is used to demonstrate the adjustable autonomy system experimentally. Results from two experiments are reported: a quantitative evaluation of human-robot team effectiveness, and a user study to compare the system to classical teleoperation. Results show the superiority of the system with respect to performance, operator workload, and usability

    Proceedings of the International Workshop "Innovation Information Technologies: Theory and Practice": Dresden, Germany, September 06-10.2010

    Get PDF
    This International Workshop is a high quality seminar providing a forum for the exchange of scientific achievements between research communities of different universities and research institutes in the area of innovation information technologies. It is a continuation of the Russian-German Workshops that have been organized by the universities in Dresden, Karlsruhe and Ufa before. The workshop was arranged in 9 sessions covering the major topics: Modern Trends in Information Technology, Knowledge Based Systems and Semantic Modelling, Software Technology and High Performance Computing, Geo-Information Systems and Virtual Reality, System and Process Engineering, Process Control and Management and Corporate Information Systems

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Autonomous Navigation for Mobile Robots in Crowded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore