243 research outputs found

    An improved medium access control protocol for real-time applications in WLANs and its firmware development

    Get PDF
    The IEEE 802.11 Wireless Local Area Network (WLAN), commonly known as Wi-Fi, has emerged as a popular internet access technology and researchers are continuously working on improvement of the quality of service (QoS) in WLAN by proposing new and efficient schemes. Voice and video over Internet Protocol (VVoIP) applications are becoming very popular in Wi-Fi enabled portable/handheld devices because of recent technological advancements and lower service costs. Different from normal voice and video streaming, these applications demand symmetric throughput for the upstream and downstream. Existing Wi-Fi standards are optimised for generic internet applications and fail to provide symmetric throughput due to traffic bottleneck at access points. Performance analysis and benchmarking is an integral part of WLAN research, and in the majority of the cases, this is done through computer simulation using popular network simulators such as Network Simulator ff 2 (NS-2) or OPNET. While computer simulation is an excellent approach for saving time and money, results generated from computer simulations do not always match practical observations. This is why, for proper assessment of the merits of a proposed system in WLAN, a trial on a practical hardware platform is highly recommended and is often a requirement. In this thesis work, with a view to address the abovementioned challenges for facilitating VoIP and VVoIP services over Wi-Fi, two key contributions are made: i) formulating a suitable medium access control (MAC) protocol to address symmetric traffic scenario and ii) firmware development of this newly devised MAC protocol for real WLAN hardware. The proposed solution shows signifocant improvements over existing standards by supporting higher number of stations with strict QoS criteria. The proposed hardware platform is available off-the-shelf in the market and is a cost effective way of generating and evaluating performance results on a hardware system

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Power-optimised multi-radio network under varying throughput constraints for rural broadband access

    Get PDF
    The use of complementary radio access technologies within a network allows the advantages of each technology to be combined to overcome individual limitations. In this paper we show how 5~GHz and ``TV White Space'' overlay networks can be combined to provide fixed wireless access coverage within a rural environment. By creating a model of the whole network we derive the optimum assignment of stations between the two overlay networks to maximise the capacity of individual stations given a desired individual station data rate. Through simulation we show how the power consumption of a base station can be minimised by dynamically adjusting station assignments based on network data rate requirements changing over the course of a day

    An admission control scheme for IEEE 802.11e wireless local area networks

    Get PDF
    Includes bibliographical references (leaves 80-84).Recent times has seen a tremendous increase in the deployment and use of 802.11 Wireless Local Area Networks (WLANs). These networks are easy to deploy and maintain, while providing reasonably high data rates at a low cost. In the paradigm of Next-Generation-Networks (NGNs), WLANs can be seen as an important access network technology to support IP multimedia services. However a traditional WLAN does not provide Quality of Service (QoS) support since it was originally designed for best effort operation. The IEEE 802. 11e standard was introduced to overcome the lack of QoS support for the legacy IEEE 802 .11 WLANs. It enhances the Media Access Control (MAC) layer operations to incorporate service differentiation. However, there is a need to prevent overloading of wireless channels, since the QoS experienced by traffic flows is degraded with heavily loaded channels. An admission control scheme for IEEE 802.11e WLANs would be the best solution to limit the amount of multimedia traffic so that channel overloading can be prevented. Some of the work in the literature proposes admission control solutions to protect the QoS of real-time traffic for IEEE 802.11e Enhanced Distributed Channel Access (EDCA). However, these solutions often under-utilize the resources of the wireless channels. A measurement-aided model-based admission control scheme for IEEE 802.11e EDCA WLANs is proposed to provide reasonable bandwidth guarantees to all existing flows. The admission control scheme makes use of bandwidth estimations that allows the bandwidth guarantees of all the flows that are admitted into the network to be protected. The bandwidth estimations are obtained using a developed analytical model of IEEE 802.11e EDCA channels. The admission control scheme also aims to accept the maximum amount of flows that can be accommodated by the network's resources. Through simulations, the performance of the proposed admission control scheme is evaluated using NS-2. Results show that accurate bandwidth estimations can be obtained when comparing the estimated achievable bandwidth to actual simulated bandwidth. The results also validate that the bandwidth needs of all admitted traffic are always satisfied when the admission control scheme is applied. It was also found that the admission control scheme allows the maximum amount of flows to be admitted into the network, according the network's capacity

    Integrated control platform for converged optical and wireless networks

    Get PDF

    Improved multi-point communication for data and voice over IEEE 802.11b

    Get PDF
    There is a growing demand for faster, improved data and voice services in rural areas without modern telecom infrastructure. A wireless network is often the only feasible solution for providing network access in this environment, due to the sparse populations and difficult natural conditions. A system solution that incorporates the Multipoint Communication System (MCS) algorithm created by TRLabs into the available IEEE 802.11b Wireless Local Area Network (WLAN) devices was proposed and studied in this thesis. It combines the advantages of both systems, that is, the MCS’ capability of integrating Voice over Internet Protocol (VoIP) and data services and the IEEE 802.11b standard, currently the most widely used in WLAN products. A system test bed was set up inside Network Simulator-2 (NS-2). The data and VoIP performance was tested. Modifications to the original MCS algorithm to improve system performance were made throughout this thesis. In a constant rate radio channel, data performance (throughput and transmission efficiency) was measured using the original MCS algorithm, which was comparable to the standard Distribution Coordination Function (DCF) operation of IEEE 802.11b when both were simulated at similar conditions. On an 802.11b platform, the Automatic Rate Fallback (ARF) feature was incorporated into the original MCS algorithm. However, when clients with different data rates were present in the same channel, all the clients involved received unacceptably low and equal data throughput, dragged down by the low rate clients. A modified MCS data polling algorithm was proposed with the capability of repeated polling, which eliminated the negative effect of low rate clients in a multi-rate channel. In addition, the original MCS algorithm was modified to be more efficient in the voice polling process. The voice performance and data throughput were tested at various conditions. However, the one-by-one polling still resulted in very low voice transmission efficiency. The time wasted became more severe with increasing relay distance and channel rate (only 8.5% in an 11 Mbps channel at 30 km). A new voice handling process similar to Time Division Multiple Access (TDMA) mode was implemented and simulated. Its voice efficiency can be kept at 25% at any setting of relay distance and channel rate. Data transmission in the same channel can also benefit from using the new voice scheme. The normalized saturation throughput could be improved by 13.5% if there were 40 voice clients involved in an 11 Mbps channel at the relay distance of 15 km, compared to the original MCS algorithm. More improvement in voice efficiency, voice capacity, and data throughput can be achieved at longer relay distance, or with more voice calls set up

    Distributed Medium Access Control for QoS Support in Wireless Networks

    Get PDF
    With the rapid growth of multimedia applications and the advances of wireless communication technologies, quality-of-service (QoS) provisioning for multimedia services in heterogeneous wireless networks has been an important issue and drawn much attention from both academia and industry. Due to the hostile transmission environment and limited radio resources, QoS provisioning in wireless networks is much more complex and difficult than in its wired counterpart. Moreover, due to the lack of central controller in the networks, distributed network control is required, adding complexity to QoS provisioning. In this thesis, medium access control (MAC) with QoS provisioning is investigated for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. Originally designed for high-rate data traffic, a WLAN has limited capability to support delay-sensitive voice traffic, and the service for voice traffic may be impacted by data traffic load, resulting in delay violation or large delay variance. Aiming at addressing these limitations, we propose an efficient MAC scheme and a call admission control algorithm to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition to supporting voice traffic, providing better services for data traffic in WLANs is another focus of our research. In the current WLANs, all the data traffic receives the same best-effort service, and it is difficult to provide further service differentiation for data traffic based on some specific requirements of customers or network service providers. In order to address this problem, we propose a novel token-based scheduling scheme, which provides great flexibility and facility to the network service provider for service class management. As a WLAN has small coverage and cannot meet the growing demand for wireless service requiring communications ``at anywhere and at anytime", a large scale multi-hop wireless network (e.g., wireless ad hoc networks and wireless mesh networks) becomes a necessity. Due to the location-dependent contentions, a number of problems (e.g., hidden/exposed terminal problem, unfairness, and priority reversal problem) appear in a multi-hop wireless environment, posing more challenges for QoS provisioning. To address these challenges, we propose a novel busy-tone based distributed MAC scheme for wireless ad hoc networks, and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme
    corecore