278 research outputs found

    Internet of Unmanned Aerial Vehicles: QoS Provisioning in Aerial Ad-Hoc Networks

    Get PDF
    Aerial ad-hoc networks have the potential to enable smart services while maintaining communication between the ground system and unmanned aerial vehicles (UAV). Previous research has focused on enabling aerial data-centric smart services while integrating the benefits of aerial objects such as UAVs in hostile and non-hostile environments. Quality of service (QoS) provisioning in UAV-assisted communication is a challenging research theme in aerial ad-hoc networks environments. Literature on aerial ad hoc networks lacks cooperative service-oriented modeling for distributed network environments, relying on costly static base station-oriented centralized network environments. Towards this end, this paper proposes a quality of service provisioning framework for a UAV-assisted aerial ad hoc network environment (QSPU) focusing on reliable aerial communication. The UAV’s aerial mobility and service parameters are modelled considering highly dynamic aerial ad-hoc environments. UAV-centric mobility models are utilized to develop a complete aerial routing framework. A comparative performance evaluation demonstrates the benefits of the proposed aerial communication framework. It is evident that QSPU outperforms the state-of-the-art techniques in terms of a number of service-oriented performance metrics in a UAV-assisted aerial ad-hoc network environment

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Aeronautical Networks for In-Flight Connectivity : A Tutorial of the State-of-the-Art and Survey of Research Challenges

    Get PDF

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    PERFORMANCE STUDY FOR CAPILLARY MACHINE-TO-MACHINE NETWORKS

    Get PDF
    Communication technologies witness a wide and rapid pervasiveness of wireless machine-to-machine (M2M) communications. It is emerging to apply for data transfer among devices without human intervention. Capillary M2M networks represent a candidate for providing reliable M2M connectivity. In this thesis, we propose a wireless network architecture that aims at supporting a wide range of M2M applications (either real-time or non-real-time) with an acceptable QoS level. The architecture uses capillary gateways to reduce the number of devices communicating directly with a cellular network such as LTE. Moreover, the proposed architecture reduces the traffic load on the cellular network by providing capillary gateways with dual wireless interfaces. One interface is connected to the cellular network, whereas the other is proposed to communicate to the intended destination via a WiFi-based mesh backbone for cost-effectiveness. We study the performance of our proposed architecture with the aid of the ns-2 simulator. An M2M capillary network is simulated in different scenarios by varying multiple factors that affect the system performance. The simulation results measure average packet delay and packet loss to evaluate the quality-of-service (QoS) of the proposed architecture. Our results reveal that the proposed architecture can satisfy the required level of QoS with low traffic load on the cellular network. It also outperforms a cellular-based capillary M2M network and WiFi-based capillary M2M network. This implies a low cost of operation for the service provider while meeting a high-bandwidth service level agreement. In addition, we investigate how the proposed architecture behaves with different factors like the number of capillary gateways, different application traffic rates, the number of backbone routers with different routing protocols, the number of destination servers, and the data rates provided by the LTE and Wi-Fi technologies. Furthermore, the simulation results show that the proposed architecture continues to be reliable in terms of packet delay and packet loss even under a large number of nodes and high application traffic rates

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    A Crosslayer Routing Protocol (XLRP) for Wireless Sensor Networks

    Get PDF
    The advent of wireless sensor networks with emphasis on the information being routed, rather than routing information has redefined networking from that of conventional wireless networked systems. Demanding that need for contnt based routing techniques and development of low cost network modules, built to operate in large numbers in a networked fashion with limited resources and capabilities. The unique characteristics of wireless sensor networks have the applicability and effectiveness of conventional algorithms defined for wireless ad-hoc networks, leading to the design and development of protocols specific to wireless sensor network. Many network layer protocols have been proposed for wireless sensor networks, identifying and addressing factors influencing network layer design, this thesis defines a cross layer routing protocol (XLRP) for sensor networks. The submitted work is suggestive of a network layer design with knowledge of application layer information and efficient utilization of physical layer capabilities onboard the sensor modules. Network layer decisions are made based on the quantity of information (size of the data) that needs to be routed and accordingly transmitter power leels are switched as an energy efficient routing strategy. The proposed routing protocol switches radio states based on the received signal strength (RSSI) acquiring only relevant information and piggybacks information in data packets for reduced controlled information exchange. The proposed algorithm has been implemented in Network Simulator (NS2) and the effectiveness of the protocol has been proved in comparison with diffusion paradigm

    U2RV: UAV-assisted reactive routing protocol for VANETs

    Get PDF
    When it comes to keeping the data routing robust and effective in Vehicular Ad hoc Networks (VANETs), stable and durable connectivity constitutes the keystone to ensure successful point-to-point communication. Since VANETs can comprise all kinds of mobile vehicles moving and changing direction frequently, this may result in frequent link failures and network partitions. Moreover, when VANETs are deployed in a city environment, another problem arises, that is, the existing obstructions (e.g., buildings, trees, hoppers, etc.) preventing the line-of-sight between vehicles, thus degrading wireless transmissions. Therefore, it is more complicated to design a routing technique that adapts to frequent changes in the topology. In order to settle all these problems, in this work, we design a flooding scheme that automatically reacts at each topology variation while overcoming the present obstacles while exchanging data in ad hoc mode with drones that are commonly called Unmanned Aerial Vehicles (UAVs). Also, the aim of this work is to explore well-regulated routing paths providing a long lifetime connectivity based on the amount of traffic and the expiration time of each discovered path, respectively. A set of experiments is carried out using simulation, and the outcomes are confronted with similar protocols based on a couple of metrics. The results clearly show that the assistance of UAVs to vehicles is capable to provide high delivery ratios and low delivery delays while efficiently extending the network connectivity
    corecore