60 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    A Data-Oriented M2M Messaging Mechanism for Industrial IoT Applications

    Get PDF

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Energy efficient cooperative coalition selection in cluster-based capillary networks for CMIMO IoT systems

    Get PDF
    The Cooperative Multiple-input-multiple-output (CMIMO) scheme has been suggested to extend the lifetime of cluster heads (CHs) in cluster-based capillary networks in Internet of Things (IoT) systems. However, the CMIMO scheme introduces extra energy overhead to cooperative devices and further reduces the lifetime of these devices. In this paper, we first articulate the problem of cooperative coalition’s selection for CMIMO scheme to extend the average battery capacity among the whole network, and then propose to apply the quantum-inspired particle swarm optimization (QPSO) to select the optimum cooperative coalitions of each hop in the routing path. Simulation results proved that the proposed QPSO-based cooperative coalition’s selection scheme could select the optimum cooperative sender and receiver devices in every hop dynamically and outperform the virtual MIMO scheme with a fixed number of cooperative devices

    Value-Based Caching in Information-Centric Wireless Body Area Networks.

    Full text link
    We propose a resilient cache replacement approach based on a Value of sensed Information (VoI) policy. To resolve and fetch content when the origin is not available due to isolated in-network nodes (fragmentation) and harsh operational conditions, we exploit a content caching approach. Our approach depends on four functional parameters in sensory Wireless Body Area Networks (WBANs). These four parameters are: age of data based on periodic request, popularity of on-demand requests, communication interference cost, and the duration for which the sensor node is required to operate in active mode to capture the sensed readings. These parameters are considered together to assign a value to the cached data to retain the most valuable information in the cache for prolonged time periods. The higher the value, the longer the duration for which the data will be retained in the cache. This caching strategy provides significant availability for most valuable and difficult to retrieve data in the WBANs. Extensive simulations are performed to compare the proposed scheme against other significant caching schemes in the literature while varying critical aspects in WBANs (e.g., data popularity, cache size, publisher load, connectivity-degree, and severe probabilities of node failures). These simulation results indicate that the proposed VoI-based approach is a valid tool for the retrieval of cached content in disruptive and challenging scenarios, such as the one experienced in WBANs, since it allows the retrieval of content for a long period even while experiencing severe in-network node failures

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities

    Get PDF
    [EN] Energy efficiency is a significant characteristic of battery-run devices such as sensors, RFID and mobile phones. In the present scenario, this is the most prominent requirement that must be served while introducing a communication protocol for an IoT environment. IoT network success and performance enhancement depend heavily on optimization of energy consumption that enhance the lifetime of IoT nodes and the network. In this context, this paper presents a comprehensive review on energy efficiency techniques used in IoT environments. The techniques proposed by researchers have been categorized based on five different layers of the energy architecture of IoT. These five layers are named as sensing, local processing and storage, network/communication, cloud processing and storage, and application. Specifically, the significance of energy efficiency in IoT environments is highlighted. A taxonomy is presented for the classification of related literature on energy efficient techniques in IoT environments. Following the taxonomy, a critical review of literature is performed focusing on major functional models, strengths and weaknesses. Open research challenges related to energy efficiency in IoT are identified as future research directions in the area. The survey should benefit IoT industry practitioners and researchers, in terms of augmenting the understanding of energy efficiency and its IoT-related trends and issues.Kumar, K.; Kumar, S.; Kaiwartya, O.; Cao, Y.; Lloret, J.; Aslam, N. (2017). Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities. Energies. 10(12):1-40. https://doi.org/10.3390/en10122073S1401012Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. IEEE Internet of Things Journal, 1(1), 22-32. doi:10.1109/jiot.2014.2306328Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., M. Leung, V. C., & Guan, Y. L. (2015). Wireless energy harvesting for the Internet of Things. IEEE Communications Magazine, 53(6), 102-108. doi:10.1109/mcom.2015.7120024Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects. IEEE Access, 4, 5356-5373. doi:10.1109/access.2016.2603219Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., & Boggia, G. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32-47. doi:10.1016/j.comcom.2014.07.013Aijaz, A., & Aghvami, A. H. (2015). Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective. IEEE Internet of Things Journal, 2(2), 103-112. doi:10.1109/jiot.2015.2390775Lin, Y.-B., Lin, Y.-W., Chih, C.-Y., Li, T.-Y., Tai, C.-C., Wang, Y.-C., … Hsu, S.-C. (2015). EasyConnect: A Management System for IoT Devices and Its Applications for Interactive Design and Art. IEEE Internet of Things Journal, 2(6), 551-561. doi:10.1109/jiot.2015.2423286Bello, O., & Zeadally, S. (2016). Intelligent Device-to-Device Communication in the Internet of Things. IEEE Systems Journal, 10(3), 1172-1182. doi:10.1109/jsyst.2014.2298837Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010Kaur, N., & Sood, S. K. (2017). An Energy-Efficient Architecture for the Internet of Things (IoT). IEEE Systems Journal, 11(2), 796-805. doi:10.1109/jsyst.2015.2469676Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues. IEEE Communications Surveys & Tutorials, 17(1), 179-197. doi:10.1109/comst.2014.2341600Machine-to-Machine Communications (M2M). M2M Service Requirementshttp://www.etsi.org/deliver/etsi_ts/102600_102699/102689/01.01.01_60/ts_102689v010101p.pdfKhan, M., Silva, B. N., & Han, K. (2016). Internet of Things Based Energy Aware Smart Home Control System. IEEE Access, 4, 7556-7566. doi:10.1109/access.2016.2621752Huang, S.-C., Chen, B.-H., Chou, S.-K., Hwang, J.-N., & Lee, K.-H. (2016). Smart Car [Application Notes]. IEEE Computational Intelligence Magazine, 11(4), 46-58. doi:10.1109/mci.2016.2601758Kant, K., & Pal, A. (2017). Internet of Perishable Logistics. IEEE Internet Computing, 21(1), 22-31. doi:10.1109/mic.2017.19Roopaei, M., Rad, P., & Choo, K.-K. R. (2017). Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Computing, 4(1), 10-15. doi:10.1109/mcc.2017.5Tröster, G. (2011). Smart Clothes—The Unfulfilled Pledge? IEEE Pervasive Computing, 10(2), 87-89. doi:10.1109/mprv.2011.32Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. doi:10.1109/comst.2015.2444095Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 4(5), 1125-1142. doi:10.1109/jiot.2017.2683200Perera, C., Liu, C. H., Jayawardena, S., & Min Chen. (2014). A Survey on Internet of Things From Industrial Market Perspective. IEEE Access, 2, 1660-1679. doi:10.1109/access.2015.2389854Kamilaris, A., & Pitsillides, A. (2016). Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal, 3(6), 885-898. doi:10.1109/jiot.2016.2600569Arcadius Tokognon, C., Gao, B., Tian, G. Y., & Yan, Y. (2017). Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet of Things Journal, 4(3), 619-635. doi:10.1109/jiot.2017.2664072Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for Internet of Things: A Survey. IEEE Internet of Things Journal, 3(1), 70-95. doi:10.1109/jiot.2015.2498900Luong, N. C., Hoang, D. T., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey. IEEE Communications Surveys & Tutorials, 18(4), 2546-2590. doi:10.1109/comst.2016.2582841Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 16(1), 414-454. doi:10.1109/surv.2013.042313.00197Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-Radio-Based Internet of Things: Applications, Architectures, Spectrum Related Functionalities, and Future Research Directions. IEEE Wireless Communications, 24(3), 17-25. doi:10.1109/mwc.2017.1600404Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23(5), 10-16. doi:10.1109/mwc.2016.7721736Cao, Y., Jiang, T., & Han, Z. (2016). A Survey of Emerging M2M Systems: Context, Task, and Objective. IEEE Internet of Things Journal, 3(6), 1246-1258. doi:10.1109/jiot.2016.2582540Rajandekar, A., & Sikdar, B. (2015). A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things Journal, 2(2), 175-186. doi:10.1109/jiot.2015.2394438Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700. doi:10.1016/j.future.2015.09.021Risteska Stojkoska, B. L., & Trivodaliev, K. V. (2017). A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production, 140, 1454-1464. doi:10.1016/j.jclepro.2016.10.006Liu, C. H., Fan, J., Branch, J. W., & Leung, K. K. (2014). Toward QoI and Energy-Efficiency in Internet-of-Things Sensory Environments. IEEE Transactions on Emerging Topics in Computing, 2(4), 473-487. doi:10.1109/tetc.2014.2364915Du, R., Gkatzikis, L., Fischione, C., & Xiao, M. (2015). Energy Efficient Sensor Activation for Water Distribution Networks Based on Compressive Sensing. IEEE Journal on Selected Areas in Communications, 33(12), 2997-3010. doi:10.1109/jsac.2015.2481199Chen, Y., Chiotellis, N., Chuo, L.-X., Pfeiffer, C., Shi, Y., Dreslinski, R. G., … Kim, H. S. (2016). Energy-Autonomous Wireless Communication for Millimeter-Scale Internet-of-Things Sensor Nodes. IEEE Journal on Selected Areas in Communications, 34(12), 3962-3977. doi:10.1109/jsac.2016.2612041Akgül, Ö. U., & Canberk, B. (2016). Self-Organized Things (SoT): An energy efficient next generation network management. Computer Communications, 74, 52-62. doi:10.1016/j.comcom.2014.07.004Ahn, J. H., & Lee, T.-J. (2018). ALLYS: All You can Send for Energy Harvesting Networks. IEEE Transactions on Mobile Computing, 17(4), 775-788. doi:10.1109/tmc.2017.2740929Mondal, S., & Paily, R. (2017). Efficient Solar Power Management System for Self-Powered IoT Node. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2359-2369. doi:10.1109/tcsi.2017.2707566Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on Cognitive Radio for Internet of Things. Journal of Network and Computer Applications, 89, 14-25. doi:10.1016/j.jnca.2017.01.003Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2017). Energy harvested roadside IEEE 802.15.4 wireless sensor networks for IoT applications. Ad Hoc Networks, 56, 109-121. doi:10.1016/j.adhoc.2016.12.003Khanouche, M. E., Amirat, Y., Chibani, A., Kerkar, M., & Yachir, A. (2016). Energy-Centered and QoS-Aware Services Selection for Internet of Things. IEEE Transactions on Automation Science and Engineering, 13(3), 1256-1269. doi:10.1109/tase.2016.2539240Afzal, B., Alvi, S. A., Shah, G. A., & Mahmood, W. (2017). Energy efficient context aware traffic scheduling for IoT applications. Ad Hoc Networks, 62, 101-115. doi:10.1016/j.adhoc.2017.05.001Song, L., Chai, K. K., Chen, Y., Schormans, J., Loo, J., & Vinel, A. (2017). QoS-Aware Energy-Efficient Cooperative Scheme for Cluster-Based IoT Systems. IEEE Systems Journal, 11(3), 1447-1455. doi:10.1109/jsyst.2015.2465292Energy-Efficient Probabilistic Routing Algorithm for Internet of Thingshttp://www.ietf.org/rfc/rfc3561.txtMachado, K., Rosário, D., Cerqueira, E., Loureiro, A., Neto, A., & de Souza, J. (2013). A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications. Sensors, 13(2), 1942-1964. doi:10.3390/s130201942Chelloug, S. A. (2015). Energy-Efficient Content-Based Routing in Internet of Things. Journal of Computer and Communications, 03(12), 9-20. doi:10.4236/jcc.2015.312002Zhao, M., Ho, I. W.-H., & Chong, P. H. J. (2016). An Energy-Efficient Region-Based RPL Routing Protocol for Low-Power and Lossy Networks. IEEE Internet of Things Journal, 3(6), 1319-1333. doi:10.1109/jiot.2016.2593438Qiu, T., Lv, Y., Xia, F., Chen, N., Wan, J., & Tolba, A. (2016). ERGID: An efficient routing protocol for emergency response Internet of Things. Journal of Network and Computer Applications, 72, 104-112. doi:10.1016/j.jnca.2016.06.009Liu, Y., Liu, A., Hu, Y., Li, Z., Choi, Y.-J., Sekiya, H., & Li, J. (2016). FFSC: An Energy Efficiency Communications Ap-proach for Delay Minimizing in Internet of Things. IEEE Access, 1-1. doi:10.1109/access.2016.2588278Qiu, S., Haselmayr, W., Li, B., Zhao, C., & Guo, W. (2017). Bacterial Relay for Energy-Efficient Molecular Communications. IEEE Transactions on NanoBioscience, 16(7), 555-562. doi:10.1109/tnb.2017.2741669Biason, A., Pielli, C., Rossi, M., Zanella, A., Zordan, D., Kelly, M., & Zorzi, M. (2017). EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design. IEEE Access, 5, 6894-6908. doi:10.1109/access.2017.2692522Huang, Z., Lin, K.-J., Yu, S.-Y., & Hsu, J. Y. (2014). Co-locating services in IoT systems to minimize the communication energy cost. Journal of Innovation in Digital Ecosystems, 1(1-2), 47-57. doi:10.1016/j.jides.2015.02.005Kwak, J., Kim, Y., Lee, J., & Chong, S. (2015). DREAM: Dynamic Resource and Task Allocation for Energy Minimization in Mobile Cloud Systems. IEEE Journal on Selected Areas in Communications, 33(12), 2510-2523. doi:10.1109/jsac.2015.2478718Abu Sharkh, M., & Shami, A. (2017). An evergreen cloud: Optimizing energy efficiency in heterogeneous cloud computing architectures. Vehicular Communications, 9, 199-210. doi:10.1016/j.vehcom.2017.02.004Bui, D.-M., Yoon, Y., Huh, E.-N., Jun, S., & Lee, S. (2017). Energy efficiency for cloud computing system based on predictive optimization. Journal of Parallel and Distributed Computing, 102, 103-114. doi:10.1016/j.jpdc.2016.11.011Liu, A., Zhang, Q., Li, Z., Choi, Y., Li, J., & Komuro, N. (2017). A green and reliable communication modeling for industrial internet of things. Computers & Electrical Engineering, 58, 364-381. doi:10.1016/j.compeleceng.2016.09.005Kim, J. (2015). Energy-Efficient Dynamic Packet Downloading for Medical IoT Platforms. IEEE Transactions on Industrial Informatics, 11(6), 1653-1659. doi:10.1109/tii.2015.2434773Chiu, T.-C., Shih, Y.-Y., Pang, A.-C., & Pai, C.-W. (2017). Optimized Day-Ahead Pricing With Renewable Energy Demand-Side Management for Smart Grids. IEEE Internet of Things Journal, 4(2), 374-383. doi:10.1109/jiot.2016.2556006Gandotra, P., Jha, R. K., & Jain, S. (2017). Green Communication in Next Generation Cellular Networks: A Survey. IEEE Access, 5, 11727-11758. doi:10.1109/access.2017.2711784Li, J., Peng, M., Yu, Y., & Ding, Z. (2016). Energy-Efficient Joint Congestion Control and Resource Optimization in Heterogeneous Cloud Radio Access Networks. IEEE Transactions on Vehicular Technology, 65(12), 9873-9887. doi:10.1109/tvt.2016.2531184Kaiwartya, O., Abdullah, A. H., Cao, Y., Lloret, J., Kumar, S., Shah, R. R., … Prakash, S. (2018). Virtualization in Wireless Sensor Networks: Fault Tolerant Embedding for Internet of Things. IEEE Internet of Things Journal, 5(2), 571-580. doi:10.1109/jiot.2017.2717704Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3kaiwartya, omprakash, Abdullah, A., Cao, Y., Rao, R. S., Kumar, S., Lobiyal, D. K., … Shah, R. R. (2016). T-MQM: Testbed based Multi-metric Quality Measurement of Sensor Deployment for Precision Agriculture-A Case Study. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2016.2614748Alrajeh, N. A., Khan, S., Lloret, J., & Loo, J. (2013). Secure Routing Protocol Using Cross-Layer Design and Energy Harvesting in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(1), 374796. doi:10.1155/2013/374796Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.272

    QoE en el contexto de Internet of Everything

    Full text link
    [ES] La investigación y el desarrollo hacia la Internet of Everything (IoE) inteligente es un empeño ambicioso y altamente interdisciplinar que debe abordarse en los diferentes niveles de su arquitectura. Un efecto colateral de esta separación se produce en la medición de la calidad de los servicios proporcionados y en cómo evaluar sus prestaciones. La calidad de experiencia de usuario (Quality of user Experience, QoE) se ha convertido en un marco de referencia de evaluación de prestaciones capaz de acoger los nuevos requisitos y demandas de este nuevo paradigma. En este artículo, proporcionamos una visión actual de la QoE en la IoE. Para ello, realizamos un estudio de las propuestas de medición de QoE, de las métricas que se sugieren para su modelado y sus relaciones. Como resultado, se identifica la necesidad de un nuevo enfoque para la evaluación de prestaciones de los servicios y aplicaciones de la IoE capaz de capturar su idiosincrasia, es decir, las nuevas métricas que definen calidad, nivel de conocimiento, nivel de inteligencia, consumo, etc., así como la carencia de un modelado entre los diferentes componentes de la QoE en IoE.This research was supported by the AEI/FEDER, UE project grant TEC2016-76465-C2-1-R (AIM).Cano, M. (2018). QoE en el contexto de Internet of Everything. En XIII Jornadas de Ingeniería telemática (JITEL 2017). Libro de actas. Editorial Universitat Politècnica de València. 160-165. https://doi.org/10.4995/JITEL2017.2017.6573OCS16016

    Design and Analysis of an Optimized Scheduling Approach using Decision Making over IoT (TOPSI) for Relay based Routing Protocols

    Get PDF
    This research work focuses on support towards QoS approaches over IoT using computational models based on scheduling schemes to enable service oriented systems. IoT system supports on application of day-to-day physical tasks with virtual objects which inter-connect to create opportunities for integration of world into computer-based systems. The QoS scheduling model TOPSI implements a top-down decision making process over top to bottom interconnected layers using service supportive optimization algorithms based on demandable QoS requirements and applications. TOPSI adopts Markov Decision Process (MDP) at the three layers from transport layer to application layer which identifies the QoS supportive metrics for IoT and maximizes the service quality at network layer. The connection cost over multiple sessions is stochastic in nature as service is supportive based on decision making algorithms. TOPSI uses QoS attributes adopted in traditional QoS mechanisms based on transmission of sensor data and decision making based on sensing ability. TOPSI model defines and measures the QoS metrics of IoT network using adaptive monitoring module at transport layer for the defined service in use. TOPSI shows optimized throughput for variable load in use, sessions and observed delay. TOPSI works on route identification, route binding, update and deletion process based on the validation of adaptive QoS metrics, before the optimal route selection process between source and destination. This research work discusses on the survey and analyzes the performance of TOPSI and RBL schemes. The simulation test beds and scenario mapping are carried out using Cooja network simulator
    corecore