1,585 research outputs found

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Quality of experience driven control of interactive media stream parameters

    Get PDF
    In recent years, cloud computing has led to many new kinds of services. One of these popular services is cloud gaming, which provides the entire game experience to the users remotely from a server, but also other applications are provided in a similar manner. In this paper we focus on the option to render the application in the cloud, thereby delivering the graphical output of the application to the user as a video stream. In more general terms, an interactive media stream is set up over the network between the user's device and the cloud server. The main issue with this approach is situated at the network, that currently gives little guarantees on the quality of service in terms of parameters such as available bandwidth, latency or packet loss. However, for interactive media stream cases, the user is merely interested in the perceived quality, regardless of the underlaying network situation. In this paper, we present an adaptive control mechanism that optimizes the quality of experience for the use case of a race game, by trading off visual quality against frame rate in function of the available bandwidth. Practical experiments verify that QoE driven adaptation leads to improved user experience compared to systems solely taking network characteristics into account

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Design and evaluation of a DASH-compliant second screen video player for live events in mobile scenarios

    Get PDF
    The huge diffusion of mobile devices is rapidly changing the way multimedia content is consumed. Mobile devices are often used as a second screen, providing complementary information on the content shown on the primary screen, as different camera angles in case of a sport event. The introduction of multiple camera angles poses many challenges with respect to guaranteeing a high Quality of Experience to the end user, especially when the live aspect, different devices and highly variable network conditions typical of mobile environments come into play. Due to the ability of HTTP Adaptive Streaming (HAS) protocols to dynamically adapt to bandwidth fluctuations, they are especially suited for the delivery of multimedia content in mobile environments. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate quality level to be dynamically requested, based on the current network conditions. Recently, a standardized solution has been proposed by the MPEG consortium, called Dynamic Adaptive Streaming over HTTP (DASH). We present in this paper a DASH-compliant iOS video player designed to support research on rate adaptation heuristics for live second screen scenarios in mobile environments. The video player allows to monitor the battery consumption and CPU usage of the mobile device and to provide this information to the heuristic. Live and Video-on-Demand streaming scenarios and real-time multi-video switching are supported as well. Quantitative results based on real 3G traces are reported on how the developed prototype has been used to benchmark two existing heuristics and to analyse the main aspects affecting battery lifetime in mobile video streaming

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario
    • …
    corecore