19 research outputs found

    Actas da 10ÂȘ ConferĂȘncia sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms

    Resource Management for Edge Computing in Internet of Things (IoT)

    Get PDF
    Die große Anzahl an GerĂ€ten im Internet der Dinge (IoT) und deren kontinuierliche Datensammlungen fĂŒhren zu einem rapiden Wachstum der gesammelten Datenmenge. Die Daten komplett mittels zentraler Cloud Server zu verarbeiten ist ineffizient und zum Teil sogar unmöglich oder unnötig. Darum wird die Datenverarbeitung an den Rand des Netzwerks verschoben, was zu den Konzepten des Edge Computings gefĂŒhrt hat. Informationsverarbeitung nahe an der Datenquelle (z.B. auf Gateways und Edge GerĂ€ten) reduziert nicht nur die hohe Arbeitslast zentraler Server und Netzwerke, sondern verringer auch die Latenz fĂŒr Echtzeitanwendungen, da die potentiell unzuverlĂ€ssige Kommunikation zu Cloud Servern mit ihrer unvorhersehbaren Netzwerklatenz vermieden wird. Aktuelle IoT Architekturen verwenden Gateways, um anwendungsspezifische Verbindungen zu IoT GerĂ€ten herzustellen. In typischen Konfigurationen teilen sich mehrere IoT Edge GerĂ€te ein IoT Gateway. Wegen der begrenzten verfĂŒgbaren Bandbreite und RechenkapazitĂ€t eines IoT Gateways muss die ServicequalitĂ€t (SQ) der verbundenen IoT Edge GerĂ€te ĂŒber die Zeit angepasst werden. Nicht nur um die Anforderungen der einzelnen Nutzer der IoT GerĂ€te zu erfĂŒllen, sondern auch um die SQBedĂŒrfnisse der anderen IoT Edge GerĂ€te desselben Gateways zu tolerieren. Diese Arbeit untersucht zuerst essentielle Technologien fĂŒr IoT und existierende Trends. Dabei werden charakteristische Eigenschaften von IoT fĂŒr die Embedded DomĂ€ne, sowie eine umfassende IoT Perspektive fĂŒr Eingebettete Systeme vorgestellt. Mehrere Anwendungen aus dem Gesundheitsbereich werden untersucht und implementiert, um ein Model fĂŒr deren Datenverarbeitungssoftware abzuleiten. Dieses Anwendungsmodell hilft bei der Identifikation verschiedener Betriebsmodi. IoT Systeme erwarten von den Edge GerĂ€ten, dass sie mehrere Betriebsmodi unterstĂŒtzen, um sich wĂ€hrend des Betriebs an wechselnde Szenarien anpassen zu können. Z.B. Energiesparmodi bei geringen Batteriereserven trotz gleichzeitiger Aufrechterhaltung der kritischen FunktionalitĂ€t oder einen Modus, um die ServicequalitĂ€t auf Wunsch des Nutzers zu erhöhen etc. Diese Modi verwenden entweder verschiedene Auslagerungsschemata (z.B. die ĂŒbertragung von Rohdaten, von partiell bearbeiteten Daten, oder nur des finalen Ergebnisses) oder verschiedene ServicequalitĂ€ten. Betriebsmodi unterscheiden sich in ihren Ressourcenanforderungen sowohl auf dem GerĂ€t (z.B. Energieverbrauch), wie auch auf dem Gateway (z.B. Kommunikationsbandbreite, Rechenleistung, Speicher etc.). Die Auswahl des besten Betriebsmodus fĂŒr Edge GerĂ€te ist eine Herausforderung in Anbetracht der begrenzten Ressourcen am Rand des Netzwerks (z.B. Bandbreite und Rechenleistung des gemeinsamen Gateways), diverser Randbedingungen der IoT Edge GerĂ€te (z.B. Batterielaufzeit, ServicequalitĂ€t etc.) und der LaufzeitvariabilitĂ€t am Rand der IoT Infrastruktur. In dieser Arbeit werden schnelle und effiziente Auswahltechniken fĂŒr Betriebsmodi entwickelt und prĂ€sentiert. Wenn sich IoT GerĂ€te in der Reichweite mehrerer Gateways befinden, ist die Verwaltung der gemeinsamen Ressourcen und die Auswahl der Betriebsmodi fĂŒr die IoT GerĂ€te sogar noch komplexer. In dieser Arbeit wird ein verteilter handelsorientierter GerĂ€teverwaltungsmechanismus fĂŒr IoT Systeme mit mehreren Gateways prĂ€sentiert. Dieser Mechanismus zielt auf das kombinierte Problem des Bindens (d.h. ein Gateway fĂŒr jedes IoT GerĂ€t bestimmen) und der Allokation (d.h. die zugewiesenen Ressourcen fĂŒr jedes GerĂ€t bestimmen) ab. Beginnend mit einer initialen Konfiguration verhandeln und kommunizieren die Gateways miteinander und migrieren IoT GerĂ€te zwischen den Gateways, wenn es den Nutzen fĂŒr das Gesamtsystem erhöht. In dieser Arbeit werden auch anwendungsspezifische Optimierungen fĂŒr IoT GerĂ€te vorgestellt. Drei Anwendungen fĂŒr den Gesundheitsbereich wurden realisiert und fĂŒr tragbare IoT GerĂ€te untersucht. Es wird auch eine neuartige Kompressionsmethode vorgestellt, die speziell fĂŒr IoT Anwendungen geeignet ist, die Bio-Signale fĂŒr GesundheitsĂŒberwachungen verarbeiten. Diese Technik reduziert die zu ĂŒbertragende Datenmenge des IoT GerĂ€tes, wodurch die Ressourcenauslastung auf dem GerĂ€t und dem gemeinsamen Gateway reduziert wird. Um die vorgeschlagenen Techniken und Mechanismen zu evaluieren, wurden einige Anwendungen auf IoT Plattformen untersucht, um ihre Parameter, wie die AusfĂŒhrungszeit und Ressourcennutzung, zu bestimmen. Diese Parameter wurden dann in einem Rahmenwerk verwendet, welches das IoT Netzwerk modelliert, die Interaktion zwischen GerĂ€ten und Gateway erfasst und den Kommunikationsoverhead sowie die erreichte Batterielebenszeit und ServicequalitĂ€t der GerĂ€te misst. Die Algorithmen zur Auswahl der Betriebsmodi wurden zusĂ€tzlich auf IoT Plattformen implementiert, um ihre Overheads bzgl. AusfĂŒhrungszeit und Speicherverbrauch zu messen

    An adaptive physiology-aware communication framework for distributed medical cyber physical systems

    Get PDF
    For emergency medical cyber-physical systems, enhancing the safety and effectiveness of patient care, especially in remote rural areas, is essential. While the doctor to patient ratio in the United States is 30 to 10,000 in large metropolitan areas, it is only 5 to 10,000 in most rural areas; and the highest death rates are often found in the most rural counties. Use of telecommunication technologies can enhance effectiveness and safety of emergency ambulance transport of patients from rural areas to a regional center hospital. It enables remote monitoring of patients by the physician experts at the tertiary center. There are critical times during transport when physician experts can provide vital assistance to the ambulance Emergency Medical Technicians (EMT) to associate best treatments. However, the communication along the roads in rural areas can range irregularly from 4G to low speed 2G links, including some parts of routes with cellular network communication breakage. This unreliable and limited communication bandwidth together with the produced mass of clinical data and the many information exchanges pose a major challenge in real-time supervision of patients. In this study, we define the notion of distributed emergency care, and propose a novel adaptive physiology-aware communication framework which is aware of the patient condition, the underlying network bandwidth, and the criticality of clinical data in the context of the specific diseases. Using the concept of distributed medical CPS models, we study the semantics relation of communication Quality of Service (QoS) with clinical messages, criticality of clinical data, and an ambulance's undertaken route all in a disease-aware manner. Our proposed communication framework is aimed to enhance remote monitoring of acute patients during ambulance transport from a rural hospital to a regional center hospital. We evaluate the components of our framework through various experimentation phases including simulation, instrumentation, real-world profiling, and validation

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore