41 research outputs found

    Wireless triple play system

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e ComputadoresTriple play is a service that combines three types of services: voice, data and multimedia over a single communication channel for a price that is less than the total price of the individual services. However there is no standard for provisioning the Triple play services, rather they are provisioned individually, since the requirements are quite different for each service. The digital revolution helped to create and deliver a high quality media solutions. One of the most demanding services is the Video on Demand (VoD). This implicates a dedicated streaming channel for each user in order to provide normal media player commands (as pause, fast forward). Most of the multimedia companies that develops personalized products does not always fulfil the users needs and are far from being cheap solutions. The goal of the project was to create a reliable and scalable triple play solution that works via Wireless Local Area Network (WLAN), fully capable of dealing with the existing state of the art multimedia technologies only resorting to open-source tools. This project was design to be a transparent web environment using only web technologies to maximize the potential of the services. HyperText Markup Language (HTML),Cascading Style Sheets (CSS) and JavaScript were the used technologies for the development of the applications. Both a administration and user interfaces were developed to fully manage all video contents and properly view it in a rich and appealing application, providing the proof of concept. The developed prototype was tested in a WLAN with up to four clients and the Quality of Service (QoS) and Quality of Experience (QoE) was measured for several combinations of active services. In the end it is possible to acknowledge that the developed prototype was capable of dealing with all the problems of WLAN technologies and successfully delivery all the proposed services with high QoE

    Bandwidth Prediction for Adaptive Video Streaming

    Get PDF

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Measuring and Improving the Quality of Experience of Adaptive Rate Video

    Get PDF
    Today's popular over-the-top (OTT) video streaming services such as YouTube, Netflix and Hulu deliver video contents to viewers using adaptive bitrate (ABR) technologies. In ABR streaming, a video player running on a viewer's device adaptively changes bitrates to match given network conditions. However, providing reliable streaming is challenging. First, an ABR player may select an inappropriate bitrate during playback due to the lack of direct knowledge of access networks, frequent user mobility and rapidly changing channel conditions. Second, OTT content is delivered to viewers without any cooperation with Internet service providers (ISPs). Last, there are no appropriate tools that evaluate the performance of ABR streaming along with video quality of experience (QoE). This thesis describes how to improve the video QoE of OTT video streaming services using ABR technologies. Our analysis starts from understanding ABR heuristics. How does ABR streaming work? What factors does an ABR player consider when switching bitrates during a download? Then, we propose our solutions to improve existing ABR streaming from the perspective of network operators who deliver video content through their networks and video service providers who build ABR players running on viewers' devices. From the network operators' point of view, we propose to find a better video content server based on round trip times (RTTs) between an edge node of a wireless network and available video content servers when a viewer requests a video. The edge node can be an Internet Service Provider (ISP) router in a Wi-Fi network and a packet data network gateway (P-GW) in a 4G network. During the experiments, our solution showed better TCP performance (e.g., higher TCP throughput during playback) 146 times out of 200 experiments (73%) over Wi-Fi networks and 162 times out of 200 experiments (81%) over 3G networks. In addition, we claim that the wireless edge nodes can assist an ABR video player in selecting the best available bitrate by controlling the available bandwidth in the radio access network between a base station and a viewer's device. In our Wi-Fi testbed, the proposed solution saved up to 21% of radio bandwidth on mobile devices and enhanced the viewing experience by reducing rebufferings during playback. Last, we assert that software-defined networking (SDN) can improve video QoE by dynamically controlling routing paths of video streaming flows based on the provisioned networking information collected from SDN-enabled networking devices. Using an off-the-shelf SDN platform, we showed that our proposed solution can reduce rebufferings by 50% and provide higher bitrates during a download. From the perspective of video service providers, higher video QoE can be achieved by improving ABR heuristics implemented in an ABR player. To support this idea, we investigated the role of playout buffer size in ABR streaming and its impact on video QoE. Through our video QoE survey, we proved that a large buffer does not always outperform a small buffer, especially under rapidly varying network conditions. Based on this finding, we suggest to dynamically change the maximum buffer size in an ABR player depending on the current capacity of its playout buffer for improving the QoE of viewers. During the experiments, our proposed solution improved the viewing experience by offering 15% higher average played bitrate, 70% fewer bitrate changes and 50% shorter rebuffering duration. Our experimental results show that even small changes of ABR heuristics and new features of network systems can greatly affect video QoE. However, it is still difficult for video service providers or network operators to evaluate new ABR heuristics or network system changes due to lack of accurate QoE monitoring systems. In order to solve this issue, we have developed YouSlow ("YouTube Too Slow!? - YouSlow") as a new approach to monitoring video QoE for the analysis of ABR performance. The lightweight web browser plug-in and mobile application are designed to monitor various playback events (e.g., rebuffering duration and frequency of bitrate changes) directly from within ABR video players and calculate statistics along with video QoE. Using YouSlow, we investigate the impact of the above playback events on video abandonment: about 10% of viewers abandoned the YouTube videos when the pre-roll ads lasted for 15 seconds. Even increasing the bitrate can annoy viewers; they prefer a high starting bitrate with no bitrate changes during playback. Our regression analysis shows that bitrate changes do not affect video abandonment significantly and the abandonment rate can be estimated accurately using the rebuffering ratio and the number of rebufferings. The thesis includes four main contributions. First, we investigate today's popular OTT video streaming services (e.g., YouTube and Netflix) that use ABR streaming technologies. Second, we propose to build QoS and QoE aware video streaming that can be implemented in existing wireless networks (e.g., Wi-Fi, 3G and 4G) and in SDN-enabled networks. Third, we propose to improve current ABR heuristics by dynamically changing the playout buffer size under varying network conditions. Last, we designed and implemented a new monitoring system for measuring video QoE

    Contribution to quality of user experience provision over wireless networks

    Get PDF
    The widespread expansion of wireless networks has brought new attractive possibilities to end users. In addition to the mobility capabilities provided by unwired devices, it is worth remarking the easy configuration process that a user has to follow to gain connectivity through a wireless network. Furthermore, the increasing bandwidth provided by the IEEE 802.11 family has made possible accessing to high-demanding services such as multimedia communications. Multimedia traffic has unique characteristics that make it greatly vulnerable against network impairments, such as packet losses, delay, or jitter. Voice over IP (VoIP) communications, video-conference, video-streaming, etc., are examples of these high-demanding services that need to meet very strict requirements in order to be served with acceptable levels of quality. Accomplishing these tough requirements will become extremely important during the next years, taking into account that consumer video traffic will be the predominant traffic in the Internet during the next years. In wired systems, these requirements are achieved by using Quality of Service (QoS) techniques, such as Differentiated Services (DiffServ), traffic engineering, etc. However, employing these methodologies in wireless networks is not that simple as many other factors impact on the quality of the provided service, e.g., fading, interferences, etc. Focusing on the IEEE 802.11g standard, which is the most extended technology for Wireless Local Area Networks (WLANs), it defines two different architecture schemes. On one hand, the infrastructure mode consists of a central point, which manages the network, assuming network controlling tasks such as IP assignment, routing, accessing security, etc. The rest of the nodes composing the network act as hosts, i.e., they send and receive traffic through the central point. On the other hand, the IEEE 802.11 ad-hoc configuration mode is less extended than the infrastructure one. Under this scheme, there is not a central point in the network, but all the nodes composing the network assume both host and router roles, which permits the quick deployment of a network without a pre-existent infrastructure. This type of networks, so called Mobile Ad-hoc NETworks (MANETs), presents interesting characteristics for situations when the fast deployment of a communication system is needed, e.g., tactics networks, disaster events, or temporary networks. The benefits provided by MANETs are varied, including high mobility possibilities provided to the nodes, network coverage extension, or network reliability avoiding single points of failure. The dynamic nature of these networks makes the nodes to react to topology changes as fast as possible. Moreover, as aforementioned, the transmission of multimedia traffic entails real-time constraints, necessary to provide these services with acceptable levels of quality. For those reasons, efficient routing protocols are needed, capable of providing enough reliability to the network and with the minimum impact to the quality of the service flowing through the nodes. Regarding quality measurements, the current trend is estimating what the end user actually perceives when consuming the service. This paradigm is called Quality of user Experience (QoE) and differs from the traditional Quality of Service (QoS) approach in the human perspective given to quality estimations. In order to measure the subjective opinion that a user has about a given service, different approaches can be taken. The most accurate methodology is performing subjective tests in which a panel of human testers rates the quality of the service under evaluation. This approach returns a quality score, so-called Mean Opinion Score (MOS), for the considered service in a scale 1 - 5. This methodology presents several drawbacks such as its high expenses and the impossibility of performing tests at real time. For those reasons, several mathematical models have been presented in order to provide an estimation of the QoE (MOS) reached by different multimedia services In this thesis, the focus is on evaluating and understanding the multimedia-content transmission-process in wireless networks from a QoE perspective. To this end, firstly, the QoE paradigm is explored aiming at understanding how to evaluate the quality of a given multimedia service. Then, the influence of the impairments introduced by the wireless transmission channel on the multimedia communications is analyzed. Besides, the functioning of different WLAN schemes in order to test their suitability to support highly demanding traffic such as the multimedia transmission is evaluated. Finally, as the main contribution of this thesis, new mechanisms or strategies to improve the quality of multimedia services distributed over IEEE 802.11 networks are presented. Concretely, the distribution of multimedia services over ad-hoc networks is deeply studied. Thus, a novel opportunistic routing protocol, so-called JOKER (auto-adJustable Opportunistic acK/timEr-based Routing) is presented. This proposal permits better support to multimedia services while reducing the energy consumption in comparison with the standard ad-hoc routing protocols.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione
    corecore