39 research outputs found

    Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights

    Full text link
    In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct {\em real-system} measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward.Comment: Preprint of a publication in ISCA 201

    OpenQASM 3: a broader and deeper quantum assembly language

    Get PDF
    Quantum assembly languages are machine-independent languages that traditionally describe quantum computation in the circuit model. Open quantum assembly language (OpenQASM 2) was proposed as an imperative programming language for quantum circuits based on earlier QASM dialects. In principle, any quantum computation could be described using OpenQASM 2, but there is a need to describe a broader set of circuits beyond the language of qubits and gates. By examining interactive use cases, we recognize two different timescales of quantum-classical interactions: real-time classical computations that must be performed within the coherence times of the qubits, and near-time computations with less stringent timing. Since the near-time domain is adequately described by existing programming frameworks, we choose in OpenQASM 3 to focus on the real-time domain, which must be more tightly coupled to the execution of quantum operations. We add support for arbitrary control flow as well as calling external classical functions. In addition, we recognize the need to describe circuits at multiple levels of specificity, and therefore we extend the language to include timing, pulse control, and gate modifiers. These new language features create a multi-level intermediate representation for circuit development and optimization, as well as control sequence implementation for calibration, characterization, and error mitigation
    corecore