45 research outputs found

    Performance Models for Split-execution Computing Systems

    Full text link
    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.Comment: Presented at 18th Workshop on Advances in Parallel and Distributed Computational Models [APDCM2016] on 23 May 2016; 10 page

    Approximate Approximation on a Quantum Annealer

    Full text link
    Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.Comment: Proceedings of the 17th ACM International Conference on Computing Frontiers (CF 2020

    Dual-Matrix Domain-Wall: A Novel Technique for Generating Permutations by QUBO and Ising Models with Quadratic Sizes

    Full text link
    The Ising model is defined by an objective function using a quadratic formula of qubit variables. The problem of an Ising model aims to determine the qubit values of the variables that minimize the objective function, and many optimization problems can be reduced to this problem. In this paper, we focus on optimization problems related to permutations, where the goal is to find the optimal permutation out of the n!n! possible permutations of nn elements. To represent these problems as Ising models, a commonly employed approach is to use a kernel that utilizes one-hot encoding to find any one of the n!n! permutations as the optimal solution. However, this kernel contains a large number of quadratic terms and high absolute coefficient values. The main contribution of this paper is the introduction of a novel permutation encoding technique called dual-matrix domain-wall, which significantly reduces the number of quadratic terms and the maximum absolute coefficient values in the kernel. Surprisingly, our dual-matrix domain-wall encoding reduces the quadratic term count and maximum absolute coefficient values from n3−n2n^3-n^2 and 2n−42n-4 to 6n2−12n+46n^2-12n+4 and 22, respectively. We also demonstrate the applicability of our encoding technique to partial permutations and Quadratic Unconstrained Binary Optimization (QUBO) models. Furthermore, we discuss a family of permutation problems that can be efficiently implemented using Ising/QUBO models with our dual-matrix domain-wall encoding.Comment: 26 pages, 9 figure

    Adiabatic Quantum Graph Matching with Permutation Matrix Constraints

    Get PDF

    Adiabatic Quantum Graph Matching with Permutation Matrix Constraints

    Get PDF
    Matching problems on 3D shapes and images are challenging as they are frequently formulated as combinatorial quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard. In this work, we address such problems with emerging quantum computing technology and propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware. We investigate several ways to inject permutation matrix constraints in a quadratic unconstrained binary optimization problem which can be mapped to quantum hardware. We focus on obtaining a sufficient spectral gap, which further increases the probability to measure optimal solutions and valid permutation matrices in a single run. We perform our experiments on the quantum computer D-Wave 2000Q (2^11 qubits, adiabatic). Despite the observed discrepancy between simulated adiabatic quantum computing and execution on real quantum hardware, our reformulation of permutation matrix constraints increases the robustness of the numerical computations over other penalty approaches in our experiments. The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures, which opens up multiple new directions for solving matching problems in 3D computer vision and graphics
    corecore