30 research outputs found

    Computer modeling and signal analysis of cardiovascular physiology

    Get PDF
    This dissertation aims to study cardiovascular physiology from the cellular level to the whole heart level to the body level using numerical approaches. A mathematical model was developed to describe electromechanical interaction in the heart. The model integrates cardio-electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced currents. A finite element based parallel simulation scheme was developed to investigate coupled electrical and mechanical functions. The developed model and numerical scheme were utilized to study cardiovascular dynamics at cellular, tissue and organ levels. The influence of ion channel blockade on cardiac alternans was investigated. It was found that the channel blocker may significantly change the critical pacing period corresponding to the onset of alternans as well as the alternans’ amplitude. The influence of electro-mechanical coupling on cardiac alternans was also investigated. The study supported the earlier assumptions that discordant alternans is induced by the interaction of conduction velocity and action potential duration restitution at high pacing rates. However, mechanical contraction may influence the spatial pattern and onset of discordant alternans. Computer algorithms were developed for analysis of human physiology. The 12-lead electrocardiography (ECG) is the gold standard for diagnosis of various cardiac abnormalities. However, disturbances and mistakes may modify physiological waves in ECG and lead to wrong diagnoses. This dissertation developed advanced signal analysis techniques and computer software to detect and suppress artifacts and errors in ECG. These algorithms can help to improve the quality of health care when integrated into medical devices or services. Moreover, computer algorithms were developed to predict patient mortality in intensive care units using various physiological measures. Models and analysis techniques developed here may help to improve the quality of health care

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Design and Application of Wireless Body Sensors

    Get PDF
    Hörmann T. Design and Application of Wireless Body Sensors. Bielefeld: Universität Bielefeld; 2019

    New visualization model for large scale biosignals analysis

    Get PDF
    Benefits of long-term monitoring have drawn considerable attention in healthcare. Since the acquired data provides an important source of information to clinicians and researchers, the choice for long-term monitoring studies has become frequent. However, long-term monitoring can result in massive datasets, which makes the analysis of the acquired biosignals a challenge. In this case, visualization, which is a key point in signal analysis, presents several limitations and the annotations handling in which some machine learning algorithms depend on, turn out to be a complex task. In order to overcome these problems a novel web-based application for biosignals visualization and annotation in a fast and user friendly way was developed. This was possible through the study and implementation of a visualization model. The main process of this model, the visualization process, comprised the constitution of the domain problem, the abstraction design, the development of a multilevel visualization and the study and choice of the visualization techniques that better communicate the information carried by the data. In a second process, the visual encoding variables were the study target. Finally, the improved interaction exploration techniques were implemented where the annotation handling stands out. Three case studies are presented and discussed and a usability study supports the reliability of the implemented work

    EgoActive: Integrated wireless wearable sensors for capturing infant egocentric auditory-visual statistics and autonomic nervous system function ‘in the wild’

    Get PDF
    There have been sustained efforts toward using naturalistic methods in developmental science to measure infant behaviors in the real world from an egocentric perspective because statistical regularities in the environment can shape and be shaped by the developing infant. However, there is no user-friendly and unobtrusive technology to densely and reliably sample life in the wild. To address this gap, we present the design, implementation and validation of the EgoActive platform, which addresses limitations of existing wearable technologies for developmental research. EgoActive records the active infants’ egocentric perspective of the world via a miniature wireless head-mounted camera concurrently with their physiological responses to this input via a lightweight, wireless ECG/acceleration sensor. We also provide software tools to facilitate data analyses. Our validation studies showed that the cameras and body sensors performed well. Families also reported that the platform was comfortable, easy to use and operate, and did not interfere with daily activities. The synchronized multi-modal data from the EgoActive platform can help tease apart complex processes that are important for child development to further our understanding of areas ranging from executive function to emotion processing and social learning

    FPGA based reconfigurable body area network using Nios II and uClinux

    Get PDF
    This research is focused on identifying an appropriate design for a reconfigurable Body Area Network (BAN). In order to investigate the benefits and drawbacks of the proposed design, a BAN system prototype was built. This system consists of two distinct node types: a slave node and a master node. These nodes communicate using ZigBee radio transceivers. The microcontroller-based slave node acquires sensor data and transmits digitized samples to the master node. The master node is FPGA-based and runs uClinux on a soft-core microcontroller. The purpose of the master node is to receive, process and store digitized sensor data. In order to verify the operation of the BAN system prototype and demonstrate reconfigurability, a specific application was required. Pattern recognition in electrocardiogram (ECG) data was the application used in this work and the MIT-BIH Arrhythmia Database was used as the known data source for verification. A custom test platform was designed and built for the purpose of injecting data from the MIT-BIH Arrhythmia Database into the BAN system. The BAN system designed and built in this work demonstrates the ability to record raw ECG data, detect R-peaks, calculate and record R-R intervals, detect premature ventricular and atrial contractions. As this thesis will identify, many aspects of this BAN system were designed to be highly reconfigurable allowing it to be used for a wide range of BAN applications, in addition to pattern recognition of ECG data

    Journal of Telecommunications and Information Technology, 2005, nr 4

    Get PDF

    Digitizing arquetypal human expereience through physiological signals

    Get PDF
    The problem of capturing human experience is relevant in many application domains. In fact, the process of describing and sharing individual experience lies at the heart of human culture. This advancement came at a price of losing some of the multidimensional aspects of primary, bodily experience during its projection into the symbolic formThroughout the courses of our lives we learn a great deal of information about the world from other people's experience. Besides the ability to share utilitarian experience such as whether a particular plant is poisonous, humans have developed a sophisticated competency of social signaling that enables us to express and decode emotional experience. The natural way of sharing emotional experiences requires those who share to be co-present during this event. However, people have overcome the limitation of physical presence by creating a symbolic system of representations.Recent research in the field of affective computing has addressed the question of digitization and transmission of emotional experience through monitoring and interpretation of physiological signals. Although the outcomes of this research represent a great step forward in developing a technology that supports sharing of emotional experiences, they do not seem to help in preserving the original phenomenological experience during the aforementioned projection. This circumstance is explained by the fact that in affective computing the focus of investigation has been aimed at emotional experiences which can be consciously evaluated and described by individuals themselves. Therefore, generally speaking, applying an affective computing technique for capturing emotions of an individual is not a deeper or more precise way to project her experience into the symbolic form than asking this person to write down a description of her emotions on a piece of paper. One can say that so far the research in affective computing has aimed at delivering technology that could automate the projection but it has not considered the problem of improving the projection in order to preserve more of the multidimensional aspects of human experience.This dissertation examines whether human experience, which individuals are not able to consciously transpose into the symbolic representation, can still be captured using the techniques of affective computing.First, a theoretical framework for description of human experience which is not accessible for conscious awareness was formulated. This framework was based on the work of Carl Jung who introduced a model of a psyche that includes three levels: consciousness, the personal unconscious and the collective unconscious. Consciousness is the external layer of the psyche that consists of those thoughts and emotions which are available for one¿s conscious recollection. The personal unconscious represents a repository for all of an individual¿s feelings, memories, knowledge and thoughts that are not conscious at a given moment of time.The collective unconscious is a repository of universal modes and behaviors that are similar in all individuals. According to Jung, the collective unconscious is populated with archetypes. Archetypes are prototypical categories of objects, people and situations that existed across evolutionary time and in different cultures.Esta tesis doctoral examina si la experiencia humana, que los individuos no pueden transponer conscientemente a la representación simbólica, aún puede capturarse utilizando las técnicas de computación afectiva. Primero, se formula un marco teórico para la descripción de la experiencia humana que no es accesible para la conciencia consciente. Este marco se basó en el trabajo de Carl Jung, quien introdujo un modelo de psique que incluye tres niveles: la conciencia, el inconsciente personal y el inconsciente colectivo. Habiendo definido nuestro marco teórico, realizamos un experimento en el que se mostraron a los sujetos estímulos visuales y auditivos de bases de datos estandarizadas para la obtención de emociones conscientes. Aparte de los estímulos para las emociones conscientes, los sujetos fueron expuestos a estímulos que representaban el arquetipo del yo. Durante la presentación de los estímulos cardiovasculares se registraron las señales de los sujetos. Los resultados experimentales indicaron que las respuestas de la frecuencia cardíaca de los participantes fueron únicas para cada categoría de estímulos, incluido el arquetípico. Estos hallazgos dieron impulso a realizar otro estudio en el que se examinó un espectro más amplio de experiencias arquetípicas. En nuestro segundo estudio, hicimos un cambio de estímulos visuales y auditivos a estímulos audiovisuales porque se esperaba que los videos fueran más eficientes en la obtención de emociones conscientes y experiencias arquetípicas que las imágenes fijas o los sonidos. La cantidad de arquetipos aumentó y los sujetos en general fueron estimulados a sentir ocho experiencias arquetípicas diferentes. También preparamos estímulos para emociones conscientes. En este experimento, las señales fisiológicas incluyeron actividades cardiovasculares, electrodérmicas, respiratorias y temperatura de la piel. El análisis estadístico sugirió que las experiencias arquetípicas podrían diferenciarse en función de las activaciones fisiológicas. Además, se construyeron varios modelos de predicción basados en los datos fisiológicos recopilados. Estos modelos demostraron la capacidad de clasificar los arquetipos con una precisión que era considerablemente más alta que el nivel de probabilidad. Como los resultados del segundo estudio sugirieron una relación positiva entre las experiencias arquetípicas y las activaciones de señales fisiológicas, parecía razonable realizar otro estudio para confirmar la generalización de nuestros hallazgos. Sin embargo, antes de comenzar un nuevo experimento, se decidió construir una herramienta que pudiera facilitar la recopilación de datos fisiológicos y el reconocimiento de experiencias arquetípicas, así como de emociones conscientes. Tal herramienta nos ayudaría a nosotros y a otros investigadores a realizar experimentos sobre la experiencia humana. Nuestra herramienta funciona en "tablets" y admite la recopilación y el análisis de datos de sensores fisiológicos. El último estudio se realizó utilizando una metodología similar al segundo experimento con varias modificaciones que tenían como objetivo obtener resultados más sólidos. El esfuerzo de realizar este estudio se redujo considerablemente al usar la herramienta desarrollada. Durante el experimento, sólo medimos las actividades cardiovasculares y electrodérmicas de los sujetos porque nuestros experimentos anteriores mostraron que estas dos señales contribuyeron significativamente a la clasificación de las emociones conscientes y las experiencias arquetípicas. El análisis estadístico indicó una relación significativa entre los arquetipos retratados en los videos y las respuestas fisiológicas de los sujetos. Además, utilizando métodos de minería de datos, creamos modelos de predicción que fueron capaces de reconocer las experiencias arquetípicas con una precisión menor que en el segundo estudio, pero todavía considerablemente..
    corecore