343 research outputs found

    Matrix Recipes for Hard Thresholding Methods

    Full text link
    In this paper, we present and analyze a new set of low-rank recovery algorithms for linear inverse problems within the class of hard thresholding methods. We provide strategies on how to set up these algorithms via basic ingredients for different configurations to achieve complexity vs. accuracy tradeoffs. Moreover, we study acceleration schemes via memory-based techniques and randomized, ϵ\epsilon-approximate matrix projections to decrease the computational costs in the recovery process. For most of the configurations, we present theoretical analysis that guarantees convergence under mild problem conditions. Simulation results demonstrate notable performance improvements as compared to state-of-the-art algorithms both in terms of reconstruction accuracy and computational complexity.Comment: 26 page

    Robust Linear Regression Analysis - A Greedy Approach

    Full text link
    The task of robust linear estimation in the presence of outliers is of particular importance in signal processing, statistics and machine learning. Although the problem has been stated a few decades ago and solved using classical (considered nowadays) methods, recently it has attracted more attention in the context of sparse modeling, where several notable contributions have been made. In the present manuscript, a new approach is considered in the framework of greedy algorithms. The noise is split into two components: a) the inlier bounded noise and b) the outliers, which are explicitly modeled by employing sparsity arguments. Based on this scheme, a novel efficient algorithm (Greedy Algorithm for Robust Denoising - GARD), is derived. GARD alternates between a least square optimization criterion and an Orthogonal Matching Pursuit (OMP) selection step that identifies the outliers. The case where only outliers are present has been studied separately, where bounds on the \textit{Restricted Isometry Property} guarantee that the recovery of the signal via GARD is exact. Moreover, theoretical results concerning convergence as well as the derivation of error bounds in the case of additional bounded noise are discussed. Finally, we provide extensive simulations, which demonstrate the comparative advantages of the new technique

    CUR Decompositions, Similarity Matrices, and Subspace Clustering

    Get PDF
    A general framework for solving the subspace clustering problem using the CUR decomposition is presented. The CUR decomposition provides a natural way to construct similarity matrices for data that come from a union of unknown subspaces U=⋃Mi=1Si\mathscr{U}=\underset{i=1}{\overset{M}\bigcup}S_i. The similarity matrices thus constructed give the exact clustering in the noise-free case. Additionally, this decomposition gives rise to many distinct similarity matrices from a given set of data, which allow enough flexibility to perform accurate clustering of noisy data. We also show that two known methods for subspace clustering can be derived from the CUR decomposition. An algorithm based on the theoretical construction of similarity matrices is presented, and experiments on synthetic and real data are presented to test the method. Additionally, an adaptation of our CUR based similarity matrices is utilized to provide a heuristic algorithm for subspace clustering; this algorithm yields the best overall performance to date for clustering the Hopkins155 motion segmentation dataset.Comment: Approximately 30 pages. Current version contains improved algorithm and numerical experiments from the previous versio

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    • …
    corecore