1,434 research outputs found

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Framework for Virtualized Network Functions (VNFs) in Cloud of Things Based on Network Traffic Services

    Get PDF
    The cloud of things (CoT), which combines the Internet of Things (IoT) and cloud computing, may offer Virtualized Network Functions (VNFs) for IoT devices on a dynamic basis based on service-specific requirements. Although the provisioning of VNFs in CoT is described as an online decision-making problem, most widely used techniques primarily focus on defining the environment using simple models in order to discover the optimum solution. This leads to inefficient and coarse-grained provisioning since the Quality of Service (QoS) requirements for different types of CoT services are not considered, and important historical experience on how to provide for the best long-term benefits is disregarded. This paper suggests a methodology for providing VNFs intelligently in order to schedule adaptive CoT resources in line with the detection of traffic from diverse network services. The system makes decisions based on Deep Reinforcement Learning (DRL) based models that take into account the complexity of network configurations and traffic changes. To obtain stable performance in this model, a special surrogate objective function and a policy gradient DRL method known as Policy Optimisation using Kronecker-Factored Trust Region (POKTR) are utilised. The assertion that our strategy improves CoT QoS through real-time VNF provisioning is supported by experimental results. The POKTR algorithm-based DRL-based model maximises throughput while minimising network congestion compared to earlier DRL algorithms

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    Enhancing quality of service in IoT through deep learning techniques

    Get PDF
    When evaluating an Internet of Things (IoT) platform, it is crucial to consider the quality of service (QoS) as a key criterion. With critical devices relying on IoT technology for both personal and business use, ensuring its security is paramount. However, the vast amount of data generated by IoT devices makes it challenging to manage QoS using conventional techniques, particularly when attempting to extract valuable characteristics from the data. To address this issue, we propose a dynamic-progressive deep reinforcement learning (DPDRL) technique to enhance QoS in IoT. Our approach involves collecting and preprocessing data samples before storing them in the IoT cloud and monitoring user access. We evaluate our framework using metrics such as packet loss, throughput, processing delay, and overall system data rate. Our results show that our developed framework achieved a maximum throughput of 94%, indicating its effectiveness in improving QoS. We believe that our deep learning optimization approach can be further utilized in the future to enhance QoS in IoT platforms
    corecore