715 research outputs found

    The Power of Unentanglement

    Get PDF
    The class QMA(k). introduced by Kobayashi et al., consists of all languages that can be verified using k unentangled quantum proofs. Many of the simplest questions about this class have remained embarrassingly open: for example, can we give any evidence that k quantum proofs are more powerful than one? Does QMA(k) = QMA(2) for k ≥ 2? Can QMA(k) protocols be amplified to exponentially small error? In this paper, we make progress on all of the above questions. * We give a protocol by which a verifier can be convinced that a 3SAT formula of size m is satisfiable, with constant soundness, given Õ (√m) unentangled quantum witnesses with O(log m) qubits each. Our protocol relies on the existence of very short PCPs. * We show that assuming a weak version of the Additivity Conjecture from quantum information theory, any QMA(2) protocol can be amplified to exponentially small error, and QMA(k) = QMA(2) for all k ≥ 2. * We prove the nonexistence of "perfect disentanglers" for simulating multiple Merlins with one

    Uniform Diagonalization Theorem for Complexity Classes of Promise Problems including Randomized and Quantum Classes

    Full text link
    Diagonalization in the spirit of Cantor's diagonal arguments is a widely used tool in theoretical computer sciences to obtain structural results about computational problems and complexity classes by indirect proofs. The Uniform Diagonalization Theorem allows the construction of problems outside complexity classes while still being reducible to a specific decision problem. This paper provides a generalization of the Uniform Diagonalization Theorem by extending it to promise problems and the complexity classes they form, e.g. randomized and quantum complexity classes. The theorem requires from the underlying computing model not only the decidability of its acceptance and rejection behaviour but also of its promise-contradicting indifferent behaviour - a property that we will introduce as "total decidability" of promise problems. Implications of the Uniform Diagonalization Theorem are mainly of two kinds: 1. Existence of intermediate problems (e.g. between BQP and QMA) - also known as Ladner's Theorem - and 2. Undecidability if a problem of a complexity class is contained in a subclass (e.g. membership of a QMA-problem in BQP). Like the original Uniform Diagonalization Theorem the extension applies besides BQP and QMA to a large variety of complexity class pairs, including combinations from deterministic, randomized and quantum classes.Comment: 15 page

    Quantum Arthur-Merlin Games

    Get PDF
    This paper studies quantum Arthur-Merlin games, which are Arthur-Merlin games in which Arthur and Merlin can perform quantum computations and Merlin can send Arthur quantum information. As in the classical case, messages from Arthur to Merlin are restricted to be strings of uniformly generated random bits. It is proved that for one-message quantum Arthur-Merlin games, which correspond to the complexity class QMA, completeness and soundness errors can be reduced exponentially without increasing the length of Merlin's message. Previous constructions for reducing error required a polynomial increase in the length of Merlin's message. Applications of this fact include a proof that logarithmic length quantum certificates yield no increase in power over BQP and a simple proof that QMA is contained in PP. Other facts that are proved include the equivalence of three (or more) message quantum Arthur-Merlin games with ordinary quantum interactive proof systems and some basic properties concerning two-message quantum Arthur-Merlin games.Comment: 22 page

    The computational complexity of PEPS

    Get PDF
    We determine the computational power of preparing Projected Entangled Pair States (PEPS), as well as the complexity of classically simulating them, and generally the complexity of contracting tensor networks. While creating PEPS allows to solve PP problems, the latter two tasks are both proven to be #P-complete. We further show how PEPS can be used to approximate ground states of gapped Hamiltonians, and that creating them is easier than creating arbitrary PEPS. The main tool for our proofs is a duality between PEPS and postselection which allows to use existing results from quantum compexity.Comment: 5 pages, 1 figure. Published version, plus a few extra

    Computational Difficulty of Computing the Density of States

    Get PDF
    We study the computational difficulty of computing the ground state degeneracy and the density of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by a class which we call #BQP, which is the counting version of the quantum complexity class QMA. We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies that computing the ground state degeneracy or the density of states for classical Hamiltonians is just as hard as it is for quantum Hamiltonians.Comment: v2: Accepted version. 9 pages, 1 figur
    corecore