9,555 research outputs found

    Dilepton and photon production in the presence of a nontrivial Polyakov loop

    Full text link
    We calculate the production of dileptons and photons in the presence of a nontrivial Polyakov loop in QCD. This is applicable to the semi-Quark Gluon Plasma (QGP), at temperatures above but near the critical temperature for deconfinement. The Polyakov loop is small in the semi-QGP, and near unity in the perturbative QGP. Working to leading order in the coupling constant of QCD, we find that there is a mild enhancement, ~ 20%, for dilepton production in the semi-QGP over that in the perturbative QGP. In contrast, we find that photon production is strongly suppressed in the semi-QGP, by about an order of magnitude, relative to the perturbative QGP. In the perturbative QGP photon production contains contributions from 2->2 scattering and collinear emission with the Landau- Pomeranchuk-Migdal (LPM) effect. In the semi-QGP we show that the two contributions are modified differently. The rate for 2->2 scattering is suppressed by a factor which depends upon the Polyakov loop. In contrast, in an SU(N) gauge theory the collinear rate is suppressed by 1/N, so that the LPM effect vanishes at infinite N. To leading order in the semi-QGP at large N, we compute the rate from 2->2 scattering to the leading logarithmic order and the collinear rate to leading order

    Degrees of Freedom of the Quark Gluon Plasma, tested by Heavy Mesons

    Full text link
    Heavy quarks (charm and bottoms) are one of the few probes which are sensitive to the degrees of freedom of a Quark Gluon Plasma (QGP), which cannot be revealed by lattice gauge calculations in equilibrium. Due to the rapid expansion of the QGP energetic heavy quarks do not come to an equilibrium with the QGP. Their energy loss during the propagation through the QGP medium depends strongly on the modelling of the interaction of the heavy quarks with the QGP quarks and gluons, i.e. on the assuption of the degrees of freedom of the plasma. Here we compare the results of different models, the pQCD based Monte-Carlo (MC@sHQ), the Dynamical Quasi Particle Model (DQPM) and the effective mass approach, for the drag force in a thermalized QGP and discuss the sensitivity of heavy quark energy loss on the properties of the QGP as well as on non-equilibrium dynamicsComment: proceedings symposion "New Horizons" Makutsi, South Africa, Nov 201

    Kappa-deformed Statistics and the Formation of a Quark-Gluon Plasma

    Full text link
    The effect of the non-extensive form of statistical mechanics proposed by Tsallis on the formation of a quark-gluon plasma (QGP) has been recently investigated in ref. \cite{1}. The results show that for small deviations (≈10\approx 10%) from Boltzmann-Gibbs (BG) statistics in the QGP phase, the critical temperature for the formation of a QGP does not change substantially for a large variation of the chemical potential. In the present effort we use the extensive κ\kappa-deformed statistical mechanics constructed by Kaniadakis to represent the constituents of the QGP and compare the results with ref. [1].Comment: 2 Figure
    • …
    corecore