59 research outputs found

    QCA-Based Majority Gate Design under Radius of Effect-Induced Faults

    Get PDF
    This paper presents reliable QCA cell structures for designing single clock-controlled majority gates with a tolerance to radius of effect-induced faults, for use as a basic building component for carry look-ahead adder. Realizable quantum computing is still well in the future due to the complexity of the quantum mechanics that govern them. In this regard, QCA-based system design is a challenging task since each cell\u27\u27s state must interact with all the cells that are in its energy-effective range in its clocking zone, referred to as its radius of effect. This paper proposes a design approach for majority gates to overcome the constraints imposed by the radius of effect of each cell with respect to clock controls. Radius of effect induces faults that lead to constraints on the clocking scheme of majority gates. We show majority gate structures that operate with multiple radius of effect-induced faults under a single clock control. The proposed design approach to a single clock controlled majority gate ultimately facilitate more efficient and flexible clocking schemes for complex QCA designs

    Fault Tolerant Quantum-dot Cellular Automata Majority Gate Design

    Get PDF
    The purpose of this study was to examine the fault-tolerance of Quantum-dot Cellular Automata structures, namely the Majority gate. The focus of the fault-tolerance of these structures was under differing radii of effect distances. The structure of the majority gates is pivotal to the construction of complex arrays in QCA. The fault-tolerance of majority gates in QCA greatly impacts the flexibility of the clocking scheme and, therefore the entire design of the array. Testing was done with the aid of a simulation tool using realistic environment variables. The proposed fault-tolerant majority gates were found to function appropriately under a single clock control. The impact of this finding was greatly increased clock zone placement flexibility as well as a reduced amount of clocking zones for a simple carry-look-ahead full-adder.Computer Science Departmen

    Design of Efficient Full Adder in Quantum-Dot Cellular Automata

    Get PDF
    Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μm2) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches

    Fault tolerance issues in nanoelectronics

    Get PDF
    The astonishing success story of microelectronics cannot go on indefinitely. In fact, once devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected to impair their behaviour. Fault tolerant techniques will then be required. The aim of this thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient error rates for a selection of nanoelectronic gates, based upon quantum cellular automata and single electron devices, in which the electrostatic interaction between electrons is used to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional techniques are found to be unsuitable. A new technique, in which the voting approach of triple modular redundancy (TMR) is extended by cascading TMR units composed of nanogate clusters, is proposed and generalised to other voting approaches. For memory chips, an error correcting code approach is found to be suitable. Various codes are considered and a lookup table approach is proposed for encoding and decoding. We are then able to give estimations for the redundancy level to be provided on nanochips, so as to make their mean time between failures acceptable. It is found that, for logic chips, space redundancies up to a few tens are required, if mean times between failures have to be of the order of a few years. Space redundancy can also be traded for time redundancy. As for memory chips, mean times between failures of the order of a few years are found to imply both space and time redundancies of the order of ten

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    THEORY, DESIGN, AND SIMULATION OF LINA: A PATH FORWARD FOR QCA-TYPE NANOELECTRONICS

    Get PDF
    The past 50 years have seen exponential advances in digital integrated circuit technologies which has facilitated an explosion of uses and functionality. Although this rate (generally referred to as "Moore's Law") cannot be sustained indefinitely, significant advances will remain possible even after current technologies reach fundamental limits. However if these further advances are to be realized, nanoelectronics designs must be developed that provide significant improvements over, the currently-utilized, complementary metal-oxide semiconductor (CMOS) transistor based integrated circuits. One promising nanoelectronics paradigm to fulfill this function is Quantum-dot Cellular Automata (QCA). QCA provides the possibility of THz switching, molecular scaling, and provides particular applicability for advanced logical constructs such as reversible logic and systolic arrays within the paradigm. These attributes make QCA an exciting prospect; however, current fabrication technology does not exist which allows for the fabrication of reliable electronic QCA circuits which operate at room-temperature. Furthermore, a plausible path to fabrication of circuitry on the very large scale integration (VLSI) level with QCA does not currently exist. This has caused doubts to the viability of the paradigm and questions to its future as a suitable nanoelectronic replacement to CMOS. In order to resolve these issues, research was conducted into a new design which could utilize key attributes of QCA while also providing a means for near-term fabrication of reliable room-temperature circuits and a path forward for VLSI circuits.The result of this research, presented in this dissertation, is the Lattice-based Integrated-signal Nanocellular Automata (LINA) nanoelectronics paradigm. LINA designs are based on QCA and provide the same basic functionality as traditional QCA. LINA also retains the key attributes of THz switching, scalability to the molecular level, and ability to utilize advanced logical constructs which are crucial to the QCA proposals. However, LINA designs also provide significant improvements over traditional QCA. For example, the continuous correction of faults, due to LINA's integrated-signal approach, provides reliability improvements to enable room-temperature operation with cells which are potentially up to 20nm and fault tolerance to layout, patterning, stray-charge, and stuck-at-faults. In terms of fabrication, LINA's lattice-based structure allows precise relative placement through the use of self-assembly techniques seen in current nanoparticle research. LINA also allows for large enough wire and logic structures to enable use of widely available photo-lithographical patterning technologies. These aspects of the LINA designs, along with power, timing, and clocking results, have been verified through the use of new and/or modified simulation tools specifically developed for this purpose. To summarize, the LINA designs and results, presented in this dissertation, provide a path to realization of QCA-type VLSI nanoelectronic circuitry. Furthermore, they offer a renewed viability of the paradigm to replace CMOS and advance computing technologies beyond the next decade

    Performance analysis of fault-tolerant nanoelectronic memories

    Get PDF
    Performance growth in microelectronics, as described by Moore’s law, is steadily approaching its limits. Nanoscale technologies are increasingly being explored as a practical solution to sustaining and possibly surpassing current performance trends of microelectronics. This work presents an in-depth analysis of the impact on performance, of incorporating reliability schemes into the architecture of a crossbar molecular switch nanomemory and demultiplexer. Nanoelectronics are currently in their early stages, and so fabrication and design methodologies are still in the process of being studied and developed. The building blocks of nanotechnology are fabricated using bottom-up processes, which leave them highly susceptible to defects. Hence, it is very important that defect and fault-tolerant schemes be incorporated into the design of nanotechnology related devices. In this dissertation, we focus on the study of a novel and promising class of computer chip memories called crossbar molecular switch memories and their demultiplexer addressing units. A major part of this work was the design of a defect and fault tolerance scheme we called the Multi-Switch Junction (MSJ) scheme. The MSJ scheme takes advantage of the regular array geometry of the crossbar nanomemory to create multiple switches in the fabric of the crossbar nanomemory for the storage of a single bit. Implementing defect and fault tolerant schemes come at a performance cost to the crossbar nanomemory; the challenge becomes achieving a balance between device reliability and performance. We have studied the reliability induced performance penalties as they relate to the time (delay) it takes to access a bit, and the amount of power dissipated by the process. Also, MSJ was compared to the banking and error correction coding fault tolerant schemes. Studies were also conducted to ascertain the potential benefits of integrating our MSJ scheme with the banking scheme. Trade-off analysis between access time delay, power dissipation and reliability is outlined and presented in this work. Results show the MSJ scheme increases the reliability of the crossbar nanomemory and demultiplexer. Simulation results also indicated that MSJ works very well for smaller nanomemory array sizes, with reliabilities of 100% for molecular switch failure rates in the 10% or less range

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics
    corecore