21,739 research outputs found

    Comparison of Classifiers for Radar Emitter Type Identification

    Full text link
    ARTMAP neural network classifiers are considered for the identification of radar emitter types from their waveform parameters. These classifiers can represent radar emitter type classes with one or more prototypes, perform on-line incremental learning to account for novelty encountered in the field, and process radar pulse streams at high speed, making them attractive for real-time applications such as electronic support measures (ESM). The performance of four ARTMAP variants- ARTMAP (Stage 1), ARTMAP-IC, fuzzy ARTMAP and Gaussian ARTMAP - is assessed with radar data gathered in the field. The k nearest neighbor (kNN) and radial basis function (RDF) classifiers are used for reference. Simulation results indicate that fuzzy ARTMAP and Gaussian ARTMAP achieve an average classification rate consistently higher than that of the other ARTMAP classifers and comparable to that of kNN and RBF. ART-EMAP, ARTMAP-IC and fuzzy ARTMAP require fewer training epochs than Gaussian ARTMAP and RBF, and substantially fewer prototype vectors (thus, smaller physical memory requirements and faster fielded performance) than Gaussian ARTMAP, RBF and kNN. Overall, fuzzy ART MAP performs at least as well as the other classifiers in both accuracy and computational complexity, and better than each of them in at least one of these aspects of performance. Incorporation into fuzzy ARTMAP of the MT- feature of ARTMAP-IC is found to be essential for convergence during on-line training with this data set.Defense Advanced Research Projects Agency and the Office of Naval Research (N000I4-95-1-409 (S.G. and M.A.R.); National Science Foundation (IRI-97-20333) (S.G.); Natural Science and Engineering Research Council of Canada (E.G.); Office of Naval Research (N00014-95-1-0657

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    ARTMAP-FTR: A Neural Network For Fusion Target Recognition, With Application To Sonar Classification

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include automatic mapping from satellite remote sensing data, machine tool monitoring, medical prediction, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, ARTMAP-IC, Gaussian ARTMAP, and distributed ARTMAP. A new ARTMAP variant, called ARTMAP-FTR (fusion target recognition), has been developed for the problem of multi-ping sonar target classification. The development data set, which lists sonar returns from underwater objects, was provided by the Naval Surface Warfare Center (NSWC) Coastal Systems Station (CSS), Dahlgren Division. The ARTMAP-FTR network has proven to be an effective tool for classifying objects from sonar returns. The system also provides a procedure for solving more general sensor fusion problems.Office of Naval Research (N00014-95-I-0409, N00014-95-I-0657

    Wireless Interference Identification with Convolutional Neural Networks

    Full text link
    The steadily growing use of license-free frequency bands requires reliable coexistence management for deterministic medium utilization. For interference mitigation, proper wireless interference identification (WII) is essential. In this work we propose the first WII approach based upon deep convolutional neural networks (CNNs). The CNN naively learns its features through self-optimization during an extensive data-driven GPU-based training process. We propose a CNN example which is based upon sensing snapshots with a limited duration of 12.8 {\mu}s and an acquisition bandwidth of 10 MHz. The CNN differs between 15 classes. They represent packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE 802.15.1 with overlapping frequency channels within the 2.4 GHz ISM band. We show that the CNN outperforms state-of-the-art WII approaches and has a classification accuracy greater than 95% for signal-to-noise ratio of at least -5 dB

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    • …
    corecore