951 research outputs found

    Solar Energy Harvesting to Improve Capabilities of Wearable Devices

    Get PDF
    The market of wearable devices has been growing over the past decades. Smart wearables are usually part of IoT (Internet of things) systems and include many functionalities such as physiological sensors, processing units and wireless communications, that are useful in fields like healthcare, activity tracking and sports, among others. The number of functions that wearables have are increasing all the time. This result in an increase in power consumption and more frequent recharges of the battery. A good option to solve this problem is using energy harvesting so that the energy available in the environment is used as a backup power source. In this paper, an energy harvesting system for solar energy with a flexible battery, a semi-flexible solar harvester module and a BLE (Bluetooth® Low Energy) microprocessor module is presented as a proof-of-concept for the future integration of solar energy harvesting in a real wearable smart device. The designed device was tested under different circumstances to estimate the increase in battery lifetime during common daily routines. For this purpose, a procedure for testing energy harvesting solutions, based on solar energy, in wearable devices has been proposed. The main result obtained is that the device could permanently work if the solar cells received a significant amount of direct sunlight for 6 h every day. Moreover, in real-life scenarios, the device was able to generate a minimum and a maximum power of 27.8 mW and 159.1 mW, respectively. For the wearable system selected, Bindi, the dynamic tests emulating daily routines has provided increases in the state of charge from 19% (winter cloudy days, 4 solar cells) to 53% (spring sunny days, 2 solar cells). Keywords: energy harvesting; internet of things; physiologicalThis research was funded by the Department of Research and Innovation of Madrid Regional Authority, in the EMPATIA-CM research project (reference Y2018/TCS-5046). This work has been partially supported by the European Union—NextGenerationEU, with the SAPIENTIAE4BINDI project “Proof of Concept” 2021. (Ref: PDC2021-121071-I00/AEI/10.13039/501100011033). This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M26), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    High-Temperature Self-Powered Sensing System for a Smart Bearing in an Aircraft Jet Engine

    Get PDF
    Integrated health monitoring is beneficial, but due to reliability, weight, size, wiring, and other constraints, the incorporation of instrumentation onto aircraft propulsion systems is limited. Conventional wired sensing systems are not always feasible due to the size, weight constraints, and issues associated with cable routing. This article presents an integrated and self-powered wireless system for high-temperature (above 125 °C) environments powered by a thermoelectric generator (TEG) for bearing condition monitoring. A TEG with an internal oil-cooling chamber is proposed to achieve higher-energy output for small temperature gradient recorded in the jet engine in comparison with other TEGs with heat sinks. The experimental results demonstrate that, under a simulated engine environment, the TEG can provide sufficient energy for a wireless sensing system to collect environmental data every 46 s and transmit every 260 s during the critical takeoff phase of the flight and part of cruise.</p

    Embedding Logic and Non-volatile Devices in CMOS Digital Circuits for Improving Energy Efficiency

    Get PDF
    abstract: Static CMOS logic has remained the dominant design style of digital systems for more than four decades due to its robustness and near zero standby current. Static CMOS logic circuits consist of a network of combinational logic cells and clocked sequential elements, such as latches and flip-flops that are used for sequencing computations over time. The majority of the digital design techniques to reduce power, area, and leakage over the past four decades have focused almost entirely on optimizing the combinational logic. This work explores alternate architectures for the flip-flops for improving the overall circuit performance, power and area. It consists of three main sections. First, is the design of a multi-input configurable flip-flop structure with embedded logic. A conventional D-type flip-flop may be viewed as realizing an identity function, in which the output is simply the value of the input sampled at the clock edge. In contrast, the proposed multi-input flip-flop, named PNAND, can be configured to realize one of a family of Boolean functions called threshold functions. In essence, the PNAND is a circuit implementation of the well-known binary perceptron. Unlike other reconfigurable circuits, a PNAND can be configured by simply changing the assignment of signals to its inputs. Using a standard cell library of such gates, a technology mapping algorithm can be applied to transform a given netlist into one with an optimal mixture of conventional logic gates and threshold gates. This approach was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier in 65nm LP technology. Simulation and chip measurements show more than 30% improvement in dynamic power and more than 20% reduction in core area. The functional yield of the PNAND reduces with geometry and voltage scaling. The second part of this research investigates the use of two mechanisms to improve the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM devices for low voltage operation. The third part of this research focused on the design of flip-flops with non-volatile storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated with both conventional D-flipflop and the PNAND circuits to implement non-volatile logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of system locally when a power interruption occurs. However, manufacturing variations in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading to an overly pessimistic design and consequently, higher energy consumption. A detailed analysis of the design trade-offs in the driver circuitry for performing backup and restore, and a novel method to design the energy optimal driver for a given yield is presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented, in which the backup time is determined on a per-chip basis, resulting in minimizing the energy wastage and satisfying the yield constraint. To achieve a yield of 98%, the conventional approach would have to expend nearly 5X more energy than the minimum required, whereas the proposed tunable approach expends only 26% more energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are designed with the same backup and restore circuitry in 65nm technology. The embedded logic in NV-TLFF compensates performance overhead of NVL. This leads to the possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and- accumulate (MAC) unit is designed to demonstrate the performance benefits of the proposed architecture. Based on the results of HSPICE simulations, the MAC circuit with the proposed NV-TLFF cells is shown to consume at least 20% less power and area as compared to the circuit designed with conventional DFFs, without sacrificing any performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Cloud and IoT-based emerging services systems

    Get PDF
    The emerging services and analytics advocate the service delivery in a polymorphic view that successfully serves a variety of audience. The amalgamation of numerous modern technologies such as cloud computing, Internet of Things (IoT) and Big Data is the potential support behind the emerging services Systems. Today, IoT, also dubbed as ubiquitous sensing is taking the center stage over the traditional paradigm. The evolution of IoT necessitates the expansion of cloud horizon to deal with emerging challenges. In this paper, we study the cloud-based emerging services, useful in IoT paradigm, that support the effective data analytics. Also, we conceive a new classification called CNNC {Clouda, NNClouda} for cloud data models; further, some important case studies are also discussed to further strengthen the classification. An emerging service, data analytics in autonomous vehicles, is then described in details. Challenges and recommendations related to privacy, security and ethical concerns have been discussed

    Smart Manufacturing in Rolling Process Based on Thermal Safety Monitoring by Fiber Optics Sensors Equipping Mill Bearings

    Get PDF
    The steel rolling process is critical for safety and maintenance because of loading and thermal operating conditions. Machinery condition monitoring (MCM) increases the system’s safety, preventing the risk of fire, failure, and rupture. Equipping the mill bearings with sensors allows monitoring of the system in service and controls the heating of mill components. Fiber optic sensors detect loading condition, vibration, and irregular heating. In several systems, access to machinery is rather limited. Therefore, this paper preliminarily investigates how fiber optics can be effectively embedded within the mill cage to set up a smart manufacturing system. The fiber Bragg gratings (FBG) technology allows embedding sensors inside the pins of backup bearings and performing some prognosis and diagnosis activities. The study starts from the rolling mill layout and defines its accessibility, considering some real industrial cases. Testing of an FBG sensor prototype checks thermal monitoring capability inside a closed cavity, obtained on the surface of either the fixed pin of the backup bearing or the stator surrounding the outer ring. Results encourage the development of the whole prototype of the MCM system to be tested on a real mill cage in full operation

    Energy Harvesting Technology for IoT Edge Applications

    Get PDF
    The integration of energy harvesting technologies with Internet of things (IoTs) leads to the automation of building and homes. The IoT edge devices, which include end user equipment connected to the networks and interact with other networks and devices, may be located in remote locations where the main power is not available or battery replacement is not feasible. The energy harvesting technologies can reduce or eliminate the need of batteries for edge devices by using super capacitors or rechargeable batteries to recharge them in the field. The proposed chapter provides a brief discussion about possible energy harvesting technologies and their potential power densities and techniques to minimize power requirements of edge devices, so that energy harvesting solutions will be sufficient to meet the power requirements
    • …
    corecore