20,378 research outputs found

    Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    Full text link
    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.Comment: Summary of results given in Table 2. Accepted for publication in JCAP, 4th August 201

    The reflections of the life of Hugo in his writings

    Full text link
    Thesis (M.A.)--Boston Universit

    The Cowl - v.18 - n.17 - Apr 11, 1956

    Get PDF
    The Cowl - student newspaper of Providence College. Volume 18, Number 17 - April 11, 1956. 6 pages

    Final Report: Wall Effects in Cavity Flows

    Get PDF
    The wall effects in cavity flows past an arbitrary two-dimensional body is investigated for both pure-drag and lifting cases based on an inviscid nonlinear flow theory. The over-all features of various theoretical flow models for inviscid cavity flows under the wall effects are discussed from the general momentum consideration in comparison with typical viscous, incompressible wake flows in a channel. In the case of pure drag cavity flows, three theoretical models in common use, namely, the open-wake, Riabouchinsky and re-entrant jet models, are applied to evaluate the solution. Methods of numerical computation are discussed for bodies of arbitrary shape, and are carried out in detail for wedges of all angles. The final numerical results are compared between the different flow models, and the differences pointed out. Further analysis of the results has led to development of several useful formulas for correcting the wall effect. In the lifting flow case, the wall effect on the pressure and hydrodynamic forces acting on arbitrary body is formulated for the choked cavity flow in a closed water tunnel of arbitrary shape, and computed for the flat plate with a finite cavity in a straight tunnel

    Planck 2015 results:X. Diffuse component separation: Foreground maps

    Get PDF
    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.́5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future

    Joint Planck and WMAP CMB Map Reconstruction

    Get PDF
    We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined "local-generalized morphological component analysis'' (LGMCA) based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 micron as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method, ii) foreground contamination is very low, iii) the Galactic center is very clean, with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 micron map, and iv) it is free of thermal SZ contamination.Comment: Astronomy and Astrophysics, accepte

    Water waves generated by the translatory and oscillatory surface disturbance

    Get PDF
    The problem under consideration is that of two-dimensional gravity waves in water generated by a surface disturbance which oscillates with frequency Ω/2π and moves with constant rectilinear velocity U over the free water surface. The present treatment may be regarded as a generalization of a previous paper by De Prima and Wu (Ref. 1) who treated the surface waves due to a disturbance which has only the rectilinear motion. It was pointed out in Ref. 1 that the dispersive effect, not the viscous effect, plays the significant role in producing the final stationary wave configuration, and the detailed dispersion phenomenon clearly exhibits itself through the formulation of a corresponding initial value problem. Following this viewpoint, the present problem is again formulated first as an initial value problem in which the surface disturbance starts to act at a certain time instant and maintains the prescribed motion thereafter. If at any finite time instant the boundary condition is imposed that the resulting disturbance vanishes at infinite distance (because of the finite wave velocity), then the limiting solution, with the time oscillating term factored out, is mathematically determinate as the time tends to infinity and also automatically has the desired physical properties. From the associated physical constants of this problem, namely Ω, U, and the gravity constant g, a nondimensional parameter of importance is found to be a = 4ΩU/g. The asymptotic solution for large time shows that the space distribution of the wave trains are different for 0 1. For 0 1, two of these waves are suppressed, leaving two waves in the downstream. At a = 1, a kind of "resonance" phenomenon results in which the amplitude and the extent in space of one particular wave both increase with time at a rate proportional to t^(1/2). Two other special cases: (1) Ω → 0 and U > 0, (2) U = 0, Ω > 0 are also discussed; in these cases the solution reduces to known results

    Viscous Effect on Surface Waves Generated by Steady Disturbances

    Get PDF
    A linearized theory is applied here to investigate the viscous effect on water waves generated and maintained by a system of external disturbances which is distributed over the free surface of an otherwise uniform flow. The flow is taken to be in the steady state configuration. The analysis is carried out to yield the asymptotic expressions for the surface wave when the Reynolds number of the flow is either large or small

    The Cowl - v.8 - n.15 - Feb 5, 1943

    Get PDF
    The Cowl - student newspaper of Providence College. Volume 8, Number 15 - Feb 5, 1943. 4 pages
    corecore