89,691 research outputs found

    Python for Scientific Computing

    Full text link

    Python and XML for agile scientific computing

    Get PDF

    AutoParallel: A Python module for automatic parallelization and distributed execution of affine loop nests

    Get PDF
    The last improvements in programming languages, programming models, and frameworks have focused on abstracting the users from many programming issues. Among others, recent programming frameworks include simpler syntax, automatic memory management and garbage collection, which simplifies code re-usage through library packages, and easily configurable tools for deployment. For instance, Python has risen to the top of the list of the programming languages due to the simplicity of its syntax, while still achieving a good performance even being an interpreted language. Moreover, the community has helped to develop a large number of libraries and modules, tuning them to obtain great performance. However, there is still room for improvement when preventing users from dealing directly with distributed and parallel computing issues. This paper proposes and evaluates AutoParallel, a Python module to automatically find an appropriate task-based parallelization of affine loop nests to execute them in parallel in a distributed computing infrastructure. This parallelization can also include the building of data blocks to increase task granularity in order to achieve a good execution performance. Moreover, AutoParallel is based on sequential programming and only contains a small annotation in the form of a Python decorator so that anyone with little programming skills can scale up an application to hundreds of cores.Comment: Accepted to the 8th Workshop on Python for High-Performance and Scientific Computing (PyHPC 2018

    Proceedings of the 8th Python in Science conference

    Get PDF
    International audienceThe SciPy conference provides a unique opportunity to learn and affect what is happening in the realm of scientific computing with Python. Attendees have the opportunity to review the available tools and how they apply to specific problems. By providing a forum for developers to share their Python expertise with the wider commercial, academic, and research communities, this conference fosters collaboration and facilitates the sharing of software components, techniques and a vision for high level language use in scientific computing

    Performance Evaluation of Python Parallel Programming Models: Charm4Py and mpi4py

    Full text link
    Python is rapidly becoming the lingua franca of machine learning and scientific computing. With the broad use of frameworks such as Numpy, SciPy, and TensorFlow, scientific computing and machine learning are seeing a productivity boost on systems without a requisite loss in performance. While high-performance libraries often provide adequate performance within a node, distributed computing is required to scale Python across nodes and make it genuinely competitive in large-scale high-performance computing. Many frameworks, such as Charm4Py, DaCe, Dask, Legate Numpy, mpi4py, and Ray, scale Python across nodes. However, little is known about these frameworks' relative strengths and weaknesses, leaving practitioners and scientists without enough information about which frameworks are suitable for their requirements. In this paper, we seek to narrow this knowledge gap by studying the relative performance of two such frameworks: Charm4Py and mpi4py. We perform a comparative performance analysis of Charm4Py and mpi4py using CPU and GPU-based microbenchmarks other representative mini-apps for scientific computing.Comment: 7 pages, 7 figures. To appear at "Sixth International IEEE Workshop on Extreme Scale Programming Models and Middleware
    corecore