87 research outputs found

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Single View 3D Reconstruction using Deep Learning

    Get PDF
    One of the major challenges in the field of Computer Vision has been the reconstruction of a 3D object or scene from a single 2D image. While there are many notable examples, traditional methods for single view reconstruction often fail to generalise due to the presence of many brittle hand-crafted engineering solutions, limiting their applicability to real world problems. Recently, deep learning has taken over the field of Computer Vision and ”learning to reconstruct” has become the dominant technique for addressing the limitations of traditional methods when performing single view 3D reconstruction. Deep learning allows our reconstruction methods to learn generalisable image features and monocular cues that would otherwise be difficult to engineer through ad-hoc hand-crafted approaches. However, it can often be difficult to efficiently integrate the various 3D shape representations within the deep learning framework. In particular, 3D volumetric representations can be adapted to work with Convolutional Neural Networks, but they are computationally expensive and memory inefficient when using local convolutional layers. Also, the successful learning of generalisable feature representations for 3D reconstruction requires large amounts of diverse training data. In practice, this is challenging for 3D training data, as it entails a costly and time consuming manual data collection and annotation process. Researchers have attempted to address these issues by utilising self-supervised learning and generative modelling techniques, however these approaches often produce suboptimal results when compared with models trained on larger datasets. This thesis addresses several key challenges incurred when using deep learning for ”learning to reconstruct” 3D shapes from single view images. We observe that it is possible to learn a compressed representation for multiple categories of the 3D ShapeNet dataset, improving the computational and memory efficiency when working with 3D volumetric representations. To address the challenge of data acquisition, we leverage deep generative models to ”hallucinate” hidden or latent novel viewpoints for a given input image. Combining these images with depths estimated by a self-supervised depth estimator and the known camera properties, allowed us to reconstruct textured 3D point clouds without any ground truth 3D training data. Furthermore, we show that is is possible to improve upon the previous self-supervised monocular depth estimator by adding a self-attention and a discrete volumetric representation, significantly improving accuracy on the KITTI 2015 dataset and enabling the estimation of uncertainty depth predictions.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202
    corecore