17,838 research outputs found

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Transferring Real-Time Systems Research into Industrial Practice: Four Impact Case Studies

    Get PDF
    This paper describes four impact case studies where real-time systems research has been successfully transferred into industrial practice. In three cases, the technology created was translated into a viable commercial product via a start-up company. This technology transfer led to the creation and sustaining of a large number of high technology jobs over a 20 year period. The final case study involved the direct transfer of research results into an engineering company. Taken together, all four case studies have led to significant advances in automotive electronics and avionics, providing substantial returns on investment for the companies using the technology

    Real-time system overheads : a literature overview

    Get PDF
    In most contemporary systems there are several jobs concurrently competing for shared resources, such as a processor, memory, network, sensors or other devices. Sharing a resource between several jobs requires synchronizing the jobs, specifying when which job will have access to the resource. A common synchronization method is scheduling. Executing a schedule requires switching resource assignments between the jobs, which is usually referred to as context switching. The overheads associated with scheduling and context switching are part of the system overheads. Initially, in the spirit of keeping things simple, real-time systems analysis abstracted from many details, including the overheads incurred by the operating system. This has led to inherently opti-mistic results, i.e. accepting collections of jobs, which if executed on a real system will fail to meet all the constraints. In this paper we consider a less idealized platform by taking some practical aspects into account. We present an overview of literature dealing with real-time system overheads, in particular the scheduling and context switch overheads. We focus on sharing a single timely resource, such as a processor, in the context of Fixed Priority Preemptive Scheduling. We treat in detail the overhead

    Optimal Modeling Language and Framework for Schedulable Systems

    Get PDF

    Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Get PDF
    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard

    Operating system extensibility through event capture

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 31).by Thomas Pinckney III.M.Eng
    • …
    corecore