345,211 research outputs found

    Decision Taking for Selling Thread Startup

    Full text link
    Decision Taking is discussed in the context of the role it may play for a selling agent in a search market, in particular for agents involved in the sale of valuable and relatively unique items, such as a dwelling, a second hand car, or a second hand recreational vessel. Detailed connections are made between the architecture of decision making processes and a sample of software technology based concepts including instruction sequences, multi-threading, and thread algebra. Ample attention is paid to the initialization or startup of a thread dedicated to achieving a given objective, and to corresponding decision taking. As an application, the selling of an item is taken as an objective to be achieved by running a thread that was designed for that purpose

    A robust enhancement to the Clarke-Wright savings algorithm

    Get PDF
    We address the Clarke and Wright (CW) savings algorithm proposed for the Capacitated Vehicle Routing Problem (CVRP). We first consider a recent enhancement which uses the put first larger items idea originally proposed for the bin packing problem and show that the conflicting idea of putting smaller items first has a comparable performance. Next, we propose a robust enhancement to the CW savings formulation. The proposed formulation is normalized to efficiently solve different problems, independent from the measurement units and parameter intervals. To test the performance of the proposed savings function, we conduct an extensive computational study on a large set of well-known instances from the literature. Our results show that the proposed savings function provides shorter distances in the majority of the instances and the average performance is significantly better than previously presented enhancements

    Putting Instruction Sequences into Effect

    Get PDF
    An attempt is made to define the concept of execution of an instruction sequence. It is found to be a special case of directly putting into effect of an instruction sequence. Directly putting into effect of an instruction sequences comprises interpretation as well as execution. Directly putting into effect is a special case of putting into effect with other special cases classified as indirectly putting into effect

    Light bending in the galactic halo by Rindler-Ishak method

    Full text link
    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant {\Lambda} appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the galactic halo gravity parametrized by a constant {\gamma}, yields exactly the same {\gamma}- correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.Comment: 15 page

    Sharing of hand kinematic synergies across subjects in daily living activities

    Get PDF
    The motor system is hypothesised to use kinematic synergies to simplify hand control. Recent studies suggest that there is a large set of synergies, sparse in degrees of freedom, shared across subjects, so that each subject performs each action with a sparse combination of synergies. Identifying how synergies are shared across subjects can help in prostheses design, in clinical decision-making or in rehabilitation. Subject-specific synergies of healthy subjects performing a wide number of representative daily living activities were obtained through principal component analysis. To make synergies comparable between subjects and tasks, the hand kinematics data were scaled using normative range of motion data. To obtain synergies sparse in degrees of freedom a rotation method that maximizes the sum of the variances of the squared loadings was applied. Resulting synergies were clustered and each cluster was characterized by a core synergy and different indexes (prevalence, relevance for function and within-cluster synergy similarity), substantiating the sparsity of synergies. The first two core synergies represent finger flexion and were present in all subjects. The remaining core synergies represent coordination of the thumb joints, thumb-index joints, palmar arching or fingers adduction, and were employed by subjects in different combinations, thus revealing different subject-specific strategies

    Antimatter Bounds by Anti-Asteroids annihilations on Planets and Sun

    Get PDF
    The existence of antimatter stars in the Galaxy as possible signature for inflationary models with non-homogeneous baryo-synthesis may leave the trace by antimatter cosmic rays as well as by their secondaries (anti-planets and anti-meteorites) diffused bodies in our galactic halo. The anti-meteorite flux may leave its explosive gamma signature by colliding on lunar soil as well as on terrestrial, jovian and solar atmospheres. However the propagation in galaxy and the consequent evaporation in galactic matter gas suppress the lightest (m < 10^(-2)g) anti-meteorites. Anisotropic annihilation of larger anti-meteorites within a narrow mass window, maybe rarely deflected, bounced by the galactic gas disk, escaping detection in our solar system. Nevertheless heaviest anti-meteorites (m > 10^(-1)g up to 10^(6)g) are unable to be deflected by the thin galactic gas surface annihilation; they might hit the Sun (or rarely Jupiter) leading to an explosive gamma event and a spectacular track with a bouncing and even a propelling annihilation on cromosphere and photosphere. Their anti-nuclei annihilation in pions and their final hard gammas showering may be observabe as a "solar flare" at a rate nearly comparable to the observed ones. From their absence we may infer bounds on antimatter-matter ratio near or below 10^(-9) limit: already recorded data in BATSE catalog might be applied.Comment: 6 pages, more accurate estimate and minor correction

    Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories

    Full text link
    We report an experimental realization of a narrow-band polarization-entangled photon source with a linewidth of 9.6 MHz through cavity-enhanced spontaneous parametric down-conversion. This linewidth is comparable to the typical linewidth of atomic ensemble based quantum memories. Single-mode output is realized by setting a reasonable cavity length difference between different polarizations, using of temperature controlled etalons and actively stabilizing the cavity. The entangled property is characterized with quantum state tomography, giving a fidelity of 94% between our state and a maximally entangled state. The coherence length is directly measured to be 32 m through two-photon interference.Comment: 4 pages, 4 figure
    • …
    corecore