17 research outputs found

    Effects of phase regression on high-resolution functional MRI of the primary visual cortex

    Get PDF
    High-resolution functional MRI studies have become a powerful tool to non-invasively probe the sub-millimeter functional organization of the human cortex. Advances in MR hardware, imaging techniques and sophisticated post-processing methods have allowed high resolution fMRI to be used in both the clinical and academic neurosciences. However, consensus within the community regarding the use of gradient echo (GE) or spin echo (SE) based acquisition remains largely divided. On one hand, GE provides a high temporal signal-to-noise ratio (tSNR) technique sensitive to both the macro- and micro-vascular signal while SE based methods are more specific to microvasculature but suffer from lower tSNR and specific absorption rate limitations, especially at high field and with short repetition times. Fortunately, the phase of the GE-EPI signal is sensitive to vessel size and this provides a potential avenue to reduce the macrovascular weighting of the signal (phase regression, Menon 2002). In order to determine the efficacy of this technique at high-resolution, phase regression was applied to GE-EPI timeseries and compared to SE-EPI to determine if GE-EPI\u27s specificity to the microvascular compartment improved. To do this, functional data was collected from seven subjects on a neuro-optimized 7 T system at 800 μm isotropic resolution with both GE-EPI and SE-EPI while observing an 8 Hz contrast reversing checkerboard. Phase data from the GE-EPI was used to create a microvasculature-weighted time series (GE-EPI-PR). Anatomical imaging (MP2RAGE) was also collected to allow for surface segmentation so that the functional results could be projected onto a surface. A multi-echo gradient echo sequence was collected and used to identify venous vasculature. The GE-EPI-PR surface activation maps showed a high qualitative similarity with SE-EPI and also produced laminar activity profiles similar to SE-EPI. When the GE-EPI and GE-EPI-PR distributions were compared to SE-EPI it was shown that GE-EPI-PR had similar distribution characteristics to SE-EPI (p \u3c 0.05) across the top 60% of cortex. Furthermore, it was shown that GE-EPI-PR has a higher contrast-to-noise ratio (0.5 ± 0.2, mean ± std. dev. across layers) than SE-EPI (0.27 ± 0.07) demonstrating the technique has higher sensitivity than SE-EPI. Taken together this evidence suggests phase regression is a useful method in low SNR studies such as high-resolution fMRI

    Exploring structure and function of sensory cortex with 7 T MRI

    Get PDF
    In this paper, we present an overview of 7 Tesla magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) – defined here as 7 T and above – has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7 T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area

    Phase imaging for reducing macrovascular signal contributions in high-resolution fMRI

    Get PDF
    High resolution functional MRI allows for the investigation of neural activity within the cortical sheet. One consideration in high resolution fMRI is the choice of which sequence to use during imaging, as all methods come with sensitivity and specificity tradeoffs. The most used fMRI sequence is gradient-echo echo planar imaging (GE-EPI) which has the highest sensitivity but is not specific to microvasculature. GE-EPI results in a signal with pial vessel bias which increases complexity of performing studies targeted at structures within the cortex. This work seeks to explore the use of MRI phase signal as a macrovascular filter to correct this bias. First, an in-house phase combination method was designed and tested on the 7T MRI system. This method, the fitted SVD method, uses a low-resolution singular value decomposition and fitting to a polynomial basis to provide computationally efficient, phase sensitive, coil combination that is insensitive to motion. Second, a direct comparison of GE-EPI, GE-EPI with phase regression (GE-EPI-PR), and spin echo EPI (SE-EPI) was performed in humans completing a visual task. The GE-EPI-PR activation showed higher spatial similarity with SE-EPI than GE-EPI across the cortical surface. GE-EPI-PR produced a similar laminar profile to SE-EPI while maintaining a higher contrast-to-noise ratio across layers, making it a useful method in low SNR studies such as high-resolution fMRI. The final study extended this work to a resting state macaque experiment. Macaques are a common model for laminar fMRI as they allow for simultaneous imaging and electrophysiology. We hypothesized that phase regression could improve spatial specificity of the resting state data. Further analysis showed the phase data contained both system and respiratory artifacts which prevented the technique performing as expected under two physiological cleaning strategies. Future work will have to examine on-scanner physiology correction to obtain a phase timeseries without artifacts to allow for the phase regression technique to be used in macaques. This work demonstrates that phase regression reduces signal contributions from pial vessels and will improve specificity in human layer fMRI studies. This method can be completed easily with complex fMRI data which can be created using our fitted SVD method

    Triple visual hemifield maps in a case of optic chiasm hypoplasia

    Get PDF
    In humans, each hemisphere comprises an overlay of two visuotopic maps of the contralateral visual field, one from each eye. Is the capacity of the visual cortex limited to these two maps or are plastic mechanisms available to host more maps? We determined the cortical organization of the visual field maps in a rare individual with chiasma hypoplasia, where visual cortex plasticity is challenged to accommodate three hemifield maps. Using high-resolution fMRI at 7T and diffusion-weighted MRI at 3T, we found three hemiretinal inputs, instead of the normal two, to converge onto the left hemisphere. fMRI-based population receptive field mapping of the left V1-V3 at 3T revealed three superimposed hemifield representations in the left visual cortex, i.e. two representations of opposing visual hemifields from the left eye and one right hemifield representation from the right eye. We conclude that developmental plasticity including the re-wiring of local intra- and cortico-cortical connections is pivotal to support the coexistence and functioning of three hemifield maps within one hemisphere

    Validating layer-specific VASO across species

    Get PDF
    Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI

    НЕЙРОПСИХОЛОГІЯ НИНІШНЬОГО СТОРІЧЧЯ: ПЕРСПЕКТИВИ Й ВИКЛИКИ

    Get PDF
    Безпрецедентний розвиток нейронаук на початку ХХІ ст. ставить проблему переосмислення дослідницької парадигми сучасної нейропсихології. Із часу започаткування об’єктивної нейропсихології її основні здобутки лежали в галузі клінічної нейропсихології – виявлення поведінкових наслідків органічних і фізичних ушкоджень мозку. Численні дослідження нейронаук у межах низки дослідницьких програм приносять нові результати, що покращують розуміння нейронних основ психіки. У середині другої декади століття проголошено про початок масштабних проектів дослідження мозку в Європейському Союзі (Human Brain Project /HBP) і США (Brain Research Through Advancing Innovative Neurotechnologiеs). Також розширено фінансову підтримку започаткованих раніше державних і приватних дослід­ницьких проектів, таких як канадська програма «Brain Canada» чи програми Інституту наук про мозок Аллена в Сіетлі. У процесі їх реалізації з’являються нові технології діагностики індивідуальних особливостей нервової системи й значно вдосконалюються вже наявні. Найбільш перспективними є методи неінва­зивної нейровізуалізації, що ґрунтуються на функціональній магніто-резонансній та рентгенівській комп’ютерній томографії. Також відзначається необхідність гармо­нійного поєднання нових і традиційних методів дослідження. Це дає великі масиви даних для їх співвіднесення з особливостями ментальних процесів та соціальної поведінки особистості. У такій ситуації фокус нейропси­хологічних досліджень зміщується від традиційних методів клінічної психології діагностики й корекції порушень нервової системи на покращення когнітивної та соціальної адаптованості людини. Серед дослідників виникають дискусії щодо оптимального вибору й пріоритетності  перспективних стратегій досліджень, а також довготривалих соціальних наслідків розвитку нейронаук. У статті розглянуто сучасний стан дослідницьких стратегій, проекти, у яких вони реалізуються, розвиток технологій дослідження нервової системи та вплив отриманих результатів на покращення буття людини. Проаналізовано проблеми розвитку нейропсихології в Україні й розкрито участь українських нейропсихологів у міжнародних дослідницьких програмах
    corecore