74,512 research outputs found

    Pushing squares around

    Get PDF

    Slow dynamics and aging of a confined granular flow

    Full text link
    We present experimental results on slow flow properties of a granular assembly confined in a vertical column and driven upwards at a constant velocity V. For monodisperse assemblies this study evidences at low velocities (1<V<100ÎĽm/s1<V<100 \mu m/s) a stiffening behaviour i.e. the stress necessary to obtain a steady sate velocity increases roughly logarithmically with velocity. On the other hand, at very low driving velocity (V<1ÎĽm/sV<1 \mu m/s), we evidence a discontinuous and hysteretic transition to a stick-slip regime characterized by a strong divergence of the maximal blockage force when the velocity goes to zero. We show that all this phenomenology is strongly influenced by surrounding humidity. We also present a tentative to establish a link between the granular rheology and the solid friction forces between the wall and the grains. We base our discussions on a simple theoretical model and independent grain/wall tribology measurements. We also use finite elements numerical simulations to confront experimental results to isotropic elasticity. A second system made of polydisperse assemblies of glass beads is investigated. We emphasize the onset of a new dynamical behavior, i.e. the large distribution of blockage forces evidenced in the stick-slip regime

    Cubic Polyhedra

    Full text link
    A cubic polyhedron is a polyhedral surface whose edges are exactly all the edges of the cubic lattice. Every such polyhedron is a discrete minimal surface, and it appears that many (but not all) of them can be relaxed to smooth minimal surfaces (under an appropriate smoothing flow, keeping their symmetries). Here we give a complete classification of the cubic polyhedra. Among these are five new infinite uniform polyhedra and an uncountable collection of new infinite semi-regular polyhedra. We also consider the somewhat larger class of all discrete minimal surfaces in the cubic lattice.Comment: 18 pages, many figure

    Filling loops at infinity in the mapping class group

    Get PDF
    We study the Dehn function at infinity in the mapping class group, finding a polynomial upper bound of degree four. This is the same upper bound that holds for arbitrary right-angled Artin groups.Comment: 7 pages, 2 figures; this note presents a result which was contained in an earlier version of "Pushing fillings in right-angled Artin groups" (arXiv:1004.4253) but is independent of the techniques in that pape

    Rheology of a confined granular material

    Full text link
    We study the rheology of a granular material slowly driven in a confined geometry. The motion is characterized by a steady sliding with a resistance force increasing with the driving velocity and the surrounding relative humidity. For lower driving velocities a transition to stick-slip motion occurs, exhibiting a blocking enhancement whith decreasing velocity. We propose a model to explain this behavior pointing out the leading role of friction properties between the grains and the container's boundary.Comment: 9 pages, 3 .eps figures, submitted to PR

    PushPush is NP-hard in 2D

    Get PDF
    We prove that a particular pushing-blocks puzzle is intractable in 2D, improving an earlier result that established intractability in 3D [OS99]. The puzzle, inspired by the game *PushPush*, consists of unit square blocks on an integer lattice. An agent may push blocks (but never pull them) in attempting to move between given start and goal positions. In the PushPush version, the agent can only push one block at a time, and moreover, each block, when pushed, slides the maximal extent of its free range. We prove this version is NP-hard in 2D by reduction from SAT.Comment: 18 pages, 13 figures, 1 table. Improves cs.CG/991101

    A combinatorial description of the Heegaard Floer contact invariant

    Full text link
    In this short note, we observe that the Heegaard Floer contact invariant is combinatorial by applying the algorithm of Sarkar--Wang to the description of the contact invariant due to Honda--Kazez--Matic. We include an example of this combinatorial calculation.Comment: 6 page
    • …
    corecore