4,210 research outputs found

    Multi-robot team formation control in the GUARDIANS project

    Get PDF
    Purpose The GUARDIANS multi-robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots guide and accompany the firefighters on site whilst indicating possible obstacles and the locations of danger and maintaining communications links. Design/methodology/approach In order to fulfill the aforementioned tasks the robots need to exhibit certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so-called social potential field framework, which we adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots. Findings The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus the application has forced us to redefine the concept of a formation. Using the graph-theoretic terminology, we can say that a formation may be stretched out as a path or be compact as a star or wheel. We have implemented the developed behaviours in simulation environments as well as on real ERA-MOBI robots commonly referred to as Erratics. We discuss advantages and shortcomings of our model, based on the simulations as well as on the implementation with a team of Erratics.</p

    Educational Warehouse: Modular, Private and Secure Cloudable Architecture System for Educational Data Storage, Analysis and Access

    Get PDF
    [Abstract] Data in the educational context are becoming increasingly important in decision-making and teaching-learning processes. Similar to the industrial context, educational institutions are adopting data-processing technologies at all levels. To achieve representative results, the processes of extraction, transformation and uploading of educational data should be ubiquitous because, without useful data, either internal or external, it is difficult to perform a proper analysis and to obtain unbiased educational results. It should be noted that the source and type of data are heterogeneous and that the analytical processes can be so diverse that it opens up a practical problem of management and access to the data generated. At the same time, ensuring the privacy, identity, confidentiality and security of students and their data is a “sine qua non” condition for complying with the legal issues involved while achieving the required ethical premises. This work proposes a modular and scalable data system architecture that solves the complexity of data management and access. On the one hand, it allows educational institutions to collect any data generated in both the teaching-learning and management processes. On the other hand, it will enable external access to this data under appropriate privacy and security conditions.Generalitat de Catalunya; 2017 SGR 93

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    REVIEW OF TECHNOLOGY SOLUTIONS FOR KNOWLEDGE MANAGEMENTi

    Get PDF
    The present paper focuses on Knowledge Management (KM) as a new managerial discipline emerging in the last few years of the 20th century. The main emphasis of the paper is on the technological solutions applied in the organizations at different stages of the KM life cycle. It makes a classification of the types of technologies described in the theory and practice based on the main KM processes. Finally, are presented survey data on the real application of various knowledge management technologies in the organizations

    RoboPlanner: Towards an Autonomous Robotic Action Planning Framework for Industry 4.0

    Get PDF
    Autonomous robots are being increasingly integrated into manufacturing, supply chain and retail industries due to the twin advantages of improved throughput and adaptivity. In order to handle complex Industry 4.0 tasks, the autonomous robots require robust action plans, that can self-adapt to runtime changes. A further requirement is efficient implementation of knowledge bases, that may be queried during planning and execution. In this paper, we propose RoboPlanner, a framework to generate action plans in autonomous robots. In RoboPlanner, we model the knowledge of world models, robotic capabilities and task templates using knowledge property graphs and graph databases. Design time queries and robotic perception are used to enable intelligent action planning. At runtime, integrity constraints on world model observations are used to update knowledge bases. We demonstrate these solutions on autonomous picker robots deployed in Industry 4.0 warehouses

    Editor’s Note. Towards Blockchain Intelligence

    Get PDF
    In this special issue, we want to gather some innovative applications that are currently pushing forward the research on Blockchain technologies. In particular, we are interested also in those applications that put the focus on the data, enabling new processes that are able to leverage relevant knowledge from the data. This special issue will be successful if readers gain a better understanding on how Blockchain can be applied to very diverse areas, and might even be interested in designing, implementing and deploying an innovative solution to a completely different field of knowledge. We hope this Special Issue can provide a better understanding and key insights to readers on how Blockchain and artificial intelligence are cross-fertilizing to revolutionize many aspects in our societies
    corecore