47,945 research outputs found

    Polymer chain generation for coarse-grained models using radical-like polymerization

    Full text link
    An innovative method is proposed to generate configurations of coarse grained models for polymer melts. This method, largely inspired by chemical ``radical polymerization'', is divided in three stages: (i) nucleation of radicals (reacting molecules caching monomers); (ii) growth of chains within a solvent of monomers; (iii) termination: annihilation of radicals and removal of residual monomers. The main interest of this method is that relaxation is performed as chains are generated. Pure mono and poly-disperse polymers melts are generated and compared to the configurations generated by the Push Off method from Auhl et al.. A detailed study of the static properties (gyration radius, mean square internal distance, entanglement length) confirms that the radical-like polymerization technics is suitable to generate equilibrated melts. The method is flexible, and can be adapted to generate nano-structured polymers, namely diblock and triblock copolymers.Comment: 9 pages, 12 figure

    Reaction Brownian Dynamics and the effect of spatial fluctuations on the gain of a push-pull network

    Full text link
    Brownian Dynamics algorithms are widely used for simulating soft-matter and biochemical systems. In recent times, their application has been extended to the simulation of coarse-grained models of cellular networks in simple organisms. In these models, components move by diffusion, and can react with one another upon contact. However, when reactions are incorporated into a Brownian Dynamics algorithm, attention must be paid to avoid violations of the detailed-balance rule, and therefore introducing systematic errors in the simulation. We present a Brownian Dynamics algorithm for reaction-diffusion systems that rigorously obeys detailed balance for equilibrium reactions. By comparing the simulation results to exact analytical results for a bimolecular reaction, we show that the algorithm correctly reproduces both equilibrium and dynamical quantities. We apply our scheme to a ``push-pull'' network in which two antagonistic enzymes covalently modify a substrate. Our results highlight that the diffusive behaviour of the reacting species can reduce the gain of the response curve of this network.Comment: 25 pages, 7 figures, submitted to Journal of Chemical Physic

    Transferable neural networks for enhanced sampling of protein dynamics

    Full text link
    Variational auto-encoder frameworks have demonstrated success in reducing complex nonlinear dynamics in molecular simulation to a single non-linear embedding. In this work, we illustrate how this non-linear latent embedding can be used as a collective variable for enhanced sampling, and present a simple modification that allows us to rapidly perform sampling in multiple related systems. We first demonstrate our method is able to describe the effects of force field changes in capped alanine dipeptide after learning a model using AMBER99. We further provide a simple extension to variational dynamics encoders that allows the model to be trained in a more efficient manner on larger systems by encoding the outputs of a linear transformation using time-structure based independent component analysis (tICA). Using this technique, we show how such a model trained for one protein, the WW domain, can efficiently be transferred to perform enhanced sampling on a related mutant protein, the GTT mutation. This method shows promise for its ability to rapidly sample related systems using a single transferable collective variable and is generally applicable to sets of related simulations, enabling us to probe the effects of variation in increasingly large systems of biophysical interest.Comment: 20 pages, 10 figure

    The macroscopic effects of microscopic heterogeneity

    Full text link
    Over the past decade, advances in super-resolution microscopy and particle-based modeling have driven an intense interest in investigating spatial heterogeneity at the level of single molecules in cells. Remarkably, it is becoming clear that spatiotemporal correlations between just a few molecules can have profound effects on the signaling behavior of the entire cell. While such correlations are often explicitly imposed by molecular structures such as rafts, clusters, or scaffolds, they also arise intrinsically, due strictly to the small numbers of molecules involved, the finite speed of diffusion, and the effects of macromolecular crowding. In this chapter we review examples of both explicitly imposed and intrinsic correlations, focusing on the mechanisms by which microscopic heterogeneity is amplified to macroscopic effect.Comment: 20 pages, 5 figures. To appear in Advances in Chemical Physic

    High-throughput Binding Affinity Calculations at Extreme Scales

    Get PDF
    Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either pre-existing or evolutionarily selected during treatment. Key to overcoming this challenge is an understanding of the molecular determinants of drug binding. Using multi-stage pipelines of molecular simulations we can gain insights into the binding free energy and the residence time of a ligand, which can inform both stratified and personal treatment regimes and drug development. To support the scalable, adaptive and automated calculation of the binding free energy on high-performance computing resources, we introduce the High- throughput Binding Affinity Calculator (HTBAC). HTBAC uses a building block approach in order to attain both workflow flexibility and performance. We demonstrate close to perfect weak scaling to hundreds of concurrent multi-stage binding affinity calculation pipelines. This permits a rapid time-to-solution that is essentially invariant of the calculation protocol, size of candidate ligands and number of ensemble simulations. As such, HTBAC advances the state of the art of binding affinity calculations and protocols
    corecore