1,918 research outputs found

    On the Load Balancing of Edge Computing Resources for On-Line Video Delivery

    Get PDF
    Online video broadcasting platforms are distributed, complex, cloud oriented, scalable, micro-service-based systems that are intended to provide over-the-top and live content to audience in scattered geographic locations. Due to the nature of cloud VM hosting costs, the subscribers are usually served under limited resources in order to minimize delivery budget. However, operations including transcoding require high-computational capacity and any disturbance in supplying requested demand might result in quality of experience (QoE) deterioration. For any online delivery deployment, understanding user's QoE plays a crucial role for rebalancing cloud resources. In this paper, a methodology for estimating QoE is provided for a scalable cloud-based online video platform. The model will provide an adeptness guideline regarding limited cloud resources and relate computational capacity, memory, transcoding and throughput capability, and finally latency competence of the cloud service to QoE. Scalability and efficiency of the system are optimized through reckoning sufficient number of VMs and containers to satisfy the user requests even on peak demand durations with minimum number of VMs. Both horizontal and vertical scaling strategies (including VM migration) are modeled to cover up availability and reliability of intermediate and edge content delivery network cache nodes

    Cloud Services Brokerage for Mobile Ubiquitous Computing

    Get PDF
    Recently, companies are adopting Mobile Cloud Computing (MCC) to efficiently deliver enterprise services to users (or consumers) on their personalized devices. MCC is the facilitation of mobile devices (e.g., smartphones, tablets, notebooks, and smart watches) to access virtualized services such as software applications, servers, storage, and network services over the Internet. With the advancement and diversity of the mobile landscape, there has been a growing trend in consumer attitude where a single user owns multiple mobile devices. This paradigm of supporting a single user or consumer to access multiple services from n-devices is referred to as the Ubiquitous Cloud Computing (UCC) or the Personal Cloud Computing. In the UCC era, consumers expect to have application and data consistency across their multiple devices and in real time. However, this expectation can be hindered by the intermittent loss of connectivity in wireless networks, user mobility, and peak load demands. Hence, this dissertation presents an architectural framework called, Cloud Services Brokerage for Mobile Ubiquitous Cloud Computing (CSB-UCC), which ensures soft real-time and reliable services consumption on multiple devices of users. The CSB-UCC acts as an application middleware broker that connects the n-devices of users to the multi-cloud services. The designed system determines the multi-cloud services based on the user's subscriptions and the n-devices are determined through device registration on the broker. The preliminary evaluations of the designed system shows that the following are achieved: 1) high scalability through the adoption of a distributed architecture of the brokerage service, 2) providing soft real-time application synchronization for consistent user experience through an enhanced mobile-to-cloud proximity-based access technique, 3) reliable error recovery from system failure through transactional services re-assignment to active nodes, and 4) transparent audit trail through access-level and context-centric provenance

    Ordering, timeliness and reliability for publish/subscribe systems over WAN

    Get PDF
    In the last few years, the increasing use of the Internet and geo-political, sociological and financial changes induced by globalization, are paving the way for a connected world where the information is always available at the right place and the right time. As such, applications previously deployed for ``closed'' environmets, are now federating into geographically distributed systems connected through a Wide Area Network (WAN). By this evolution, in the near future no system will be isolated: every system will be composed by interconnected systems, i.e., it will be a System of Systems (SoS). Example of SoS are the Large-scale Complex Critical Infrastructure (LCCIs), such as power grids, transport infrastructures (airports and seaports), financial infrastructures, next generation intelligence platforms, to cite a few. In these systems, multiple sources of information generate a high volume of events that need to be delivered to all intended destinations by respecting several Quality of Service (QoS) constraints imposed by the critical nature of LCCIs. As such, particular attention is devoted to the middleware solution used to disseminate information in the SoS. Due to its inherently scalability provided by space, time and synchronization decoupling properties, the publish/subscribe paradigm is becoming attractive for the implementation of a middleware service for LCCIs. However, scalability is not the only requirement exhibited by SoS. Several services need to control a broader set of QoS requirements, such as timeliness, ordering and reliability. Unfortunately, current middleware solutions do not address QoS constraints required by SoS. Current publish/subscribe middleware solutions for the WAN environment offer only a best effort event dissemination, with no additional control on QoS. Just a few implementations try to address some isolated QoS policy, making them not suitable for a SoS scenario. The contribution of this thesis is to devise a QoS layer that can be posed on top of a generic publish/subscribe middleware that enriches its service by addressing: (i) ordering, (ii) reliability and (iii) timeliness in event dissemination in SoS over WAN. Specifically, we first analyze several real case studies, by highlighting their QoS requirements in terms of ordering, reliability and timeliness, and compare these requirements with both current research prototypes and commercial systems. Then, we fill the gap by proposing novel algorithms to address those requirements. The proposed protocols can also be combined together in order to provide the QoS level required by the particular application. In this way, QoS issues do not need to be addressed at application level, so as to leave applications to implement just their native functionalities

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    Ordering, timeliness and reliability for publish/subscribe systems over WAN

    Get PDF
    In the last few years, the increasing use of the Internet and geo-political, sociological and financial changes induced by globalization, are paving the way for a connected world where the information is always available at the right place and the right time. As such, applications previously deployed for ``closed'' environmets, are now federating into geographically distributed systems connected through a Wide Area Network (WAN). By this evolution, in the near future no system will be isolated: every system will be composed by interconnected systems, i.e., it will be a System of Systems (SoS). Example of SoS are the Large-scale Complex Critical Infrastructure (LCCIs), such as power grids, transport infrastructures (airports and seaports), financial infrastructures, next generation intelligence platforms, to cite a few. In these systems, multiple sources of information generate a high volume of events that need to be delivered to all intended destinations by respecting several Quality of Service (QoS) constraints imposed by the critical nature of LCCIs. As such, particular attention is devoted to the middleware solution used to disseminate information in the SoS. Due to its inherently scalability provided by space, time and synchronization decoupling properties, the publish/subscribe paradigm is becoming attractive for the implementation of a middleware service for LCCIs. However, scalability is not the only requirement exhibited by SoS. Several services need to control a broader set of QoS requirements, such as timeliness, ordering and reliability. Unfortunately, current middleware solutions do not address QoS constraints required by SoS. Current publish/subscribe middleware solutions for the WAN environment offer only a best effort event dissemination, with no additional control on QoS. Just a few implementations try to address some isolated QoS policy, making them not suitable for a SoS scenario. The contribution of this thesis is to devise a QoS layer that can be posed on top of a generic publish/subscribe middleware that enriches its service by addressing: (i) ordering, (ii) reliability and (iii) timeliness in event dissemination in SoS over WAN. Specifically, we first analyze several real case studies, by highlighting their QoS requirements in terms of ordering, reliability and timeliness, and compare these requirements with both current research prototypes and commercial systems. Then, we fill the gap by proposing novel algorithms to address those requirements. The proposed protocols can also be combined together in order to provide the QoS level required by the particular application. In this way, QoS issues do not need to be addressed at application level, so as to leave applications to implement just their native functionalities

    Load-Balancing for Edge QoE-Based VNF Placement for OTT Video Streaming

    Get PDF
    © 2018 IEEE. Over The Top (OTT) service providers require platforms to support distributed, complex, cloud-oriented, scalable, micro-service based systems. Such systems require on-the-fly placement of Virtual Network Functions (VNF) to support streaming and transcoding of content based on QoE feedback provided by the end-user. This paper proposes a QoE Scheme to support on-the-fly virtual network functions deployment for OTT video streaming and transcoding. The QoE feedback considers limited cloud resources, transcoding requirements, throughput and latency. Both horizontal and vertical scaling strategies (including VM migration) are discussed to cover up availability and reliability of intermediate and edge Content Delivery Network (CDN) cache nodes
    • …
    corecore